首页> 外文期刊>Journal of information and computational science >A Semi-supervised Dimensionality Reduction Framework for Face Recognition Based on Sparse Lorentzian Metric Tensors
【24h】

A Semi-supervised Dimensionality Reduction Framework for Face Recognition Based on Sparse Lorentzian Metric Tensors

机译:基于稀疏洛伦兹度量张量的人脸识别半监督降维框架

获取原文
获取原文并翻译 | 示例

摘要

There has been significant recent interest in extending supervised algorithms to semi-supervised form which preserve local structures of the unlabeled samples. However, how to choose the homogeneous points is still an open-problem. In this paper, by introducing the sparse Lorentzian metric, we propose a general framework to extend supervised algorithms to semi-supervised case. Our proposed techniques can find the homogeneous points of the unlabeled samples in a more natural way. The learnt sparse Lorentzian metric tensors can also keep both the local structure of the unlabeled samples and their global geometrical structure. The experimental results on face recognition show that our algorithm achieves better recognition accuracy.
机译:最近,将监督算法扩展到保留未标记样本局部结构的半监督形式引起了极大的兴趣。但是,如何选择齐次点仍然是一个难题。在本文中,通过介绍稀疏的洛伦兹度量,我们提出了一个将监督算法扩展到半监督案例的通用框架。我们提出的技术可以更自然地找到未标记样品的均质点。学到的稀疏洛伦兹度量张量还可以保持未标记样本的局部结构及其整体几何结构。人脸识别的实验结果表明,该算法具有较好的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号