首页> 外文期刊>Journal of information and computational science >Towards a Time-based Approach for Author Co-citation Analysis
【24h】

Towards a Time-based Approach for Author Co-citation Analysis

机译:寻求基于时间的作者共引分析方法

获取原文
获取原文并翻译 | 示例

摘要

The Author co-Citation Analysis (ACA) is a widely used statistical technique for mining information about those authors who publish in related research domains. The existing ACA technique generates author clusters by initially denning the co-citation count. Co-citation count between authors of two different research papers is defined as the number of times these authors are cited together by a set of source papers. The technique used to determine the co-citation count needs to be effective as it greatly influences the obtained author clusters. This paper presents an enhanced ACA that utilizes a novel co-citation counting technique. The enhanced ACA technique takes into consideration the research papers referred to in the source paper, the papers that have cited the source paper, and their publication year. Experimental results obtained indicate that the author clusters produced, comprise primarily of active researchers having published in the recent time period, specified in years. In this study, we have assumed that active researchers are those who have published in or after the year 2000. The proposed Time based ACA (TACA) technique uses a real time data set consisting of papers collected from ACM's Transaction on Database Systems (TODS) journal from the year 2006-2009. The average precision of the proposed technique is found to be around 93%, when evaluated against the benchmark ACM Computing Classification System (CCS).
机译:作者共同引用分析(ACA)是一种广泛使用的统计技术,用于挖掘有关作者在相关研究领域发表的信息。现有的ACA技术通过最初确定共引次数来生成作者群。两种不同研究论文的作者之间被引用的次数定义为一组来源论文一起引用这些作者的次数。确定共引次数的技术必须有效,因为它会极大地影响获得的作者群。本文提出了一种利用新型共引计数技术的增强型ACA。增强的ACA技术考虑了原始文件中引用的研究论文,引用原始文件的论文及其出版年份。获得的实验结果表明,所产生的作者群体主要包括最近几年(以年为单位)发表的活跃研究人员。在这项研究中,我们假设活跃的研究人员是那些在2000年或之后发表的研究人员。拟议的基于时间的ACA(TACA)技术使用了实时数据集,该数据集由从ACM的数据库系统交易(TODS)中收集的论文组成2006-2009年的期刊。当根据基准ACM计算分类系统(CCS)进行评估时,所提出技术的平均精度约为93%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号