首页> 外文期刊>Journal of information and computational science >Classifying Computer Generated Graphics and Natural Images Based on Image Contour Information
【24h】

Classifying Computer Generated Graphics and Natural Images Based on Image Contour Information

机译:基于图像轮廓信息的计算机生成图形和自然图像分类

获取原文
获取原文并翻译 | 示例

摘要

Contemporary computer graphics rendering software is capable of generating highly photorealistic images, resulting in big challenges for image authentication. In this paper, we begin with a discussion on current issues of image authentication. We then introduce a new approach to distinguish Computer Graphics (CG) from photographic images based on image contour information. The novel method is motivated by a detailed analysis of the fundamental differences between the two image categories, derived from both their distinct generation processes and from natural image statistics. In addition, we investigate the effectiveness of diversified image color representations in computer graphics identification. We also evaluate the classification performance of various feature types in different sub-bands. The experiments show that the features of high frequency image components, extracted from Hue channel in HSV color space, demonstrate best overall performance.
机译:当代的计算机图形渲染软件能够生成高度逼真的图像,从而给图像认证带来巨大挑战。在本文中,我们将从讨论当前的图像认证问题开始。然后,我们基于图像轮廓信息引入了一种新方法,可将计算机图形学(CG)与摄影图像区分开。这种新颖的方法是通过对两个图像类别之间基本差异的详细分析来激发的,这些差异源于它们独特的生成过程以及自然图像统计数据。另外,我们研究了计算机图形识别中多种图像颜色表示的有效性。我们还评估了不同子带中各种特征类型的分类性能。实验表明,从HSV色彩空间中的Hue通道提取的高频图像分量的特征表现出最佳的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号