首页> 外文期刊>Journal of information and computational science >Semi-supervised Kernel Based Progressive SVM for Coal Mine Gas Safety Data Classification
【24h】

Semi-supervised Kernel Based Progressive SVM for Coal Mine Gas Safety Data Classification

机译:基于半监督核的渐进支持向量机用于煤矿瓦斯安全数据分类

获取原文
获取原文并翻译 | 示例

摘要

It is a new way to perform coal mine safety warning using gas safety data classification. A large amount of samples are easily achieved while the labeling work is time-consuming. Using unlabeled sample to improve the learning performance is the aim of semi-supervised learning. Most existing semi-supervised methods implement either the cluster assumption or the manifold assumption. However, the performance will degrade if the assumption was not appropriate. In this paper, we proposed a method called semi-supervised kernel based progressive SVM which combines both the cluster assumption and the manifold assumption. Specifically, a semi-supervised kernel which reflect manifold information of the samples was constructed by warping the Reproducing Kernel Hilbert Space, and then the semi-supervised kernel was used in SVM which was based on cluster assumption, finally, a progressive learning procedure was used in the proposed method. Several experiments were taken on public datasets and coal mine safety data, the results showed that, compared to the progressive SVM with supervised kernel and the standard SVM with semi-supervised kernel, the proposed method using semi-supervised kernel in progressive SVM had better performance.
机译:这是利用瓦斯安全数据分类进行煤矿安全预警的一种新方法。在贴标签工作很耗时的同时,很容易获得大量样品。使用非标记样本来提高学习性能是半监督学习的目的。大多数现有的半监督方法都可以执行聚类假设或流形假设。但是,如果该假设不合适,性能将下降。在本文中,我们提出了一种基于半监督核的渐进SVM方法,该方法结合了聚类假设和流形假设。具体地,通过变形再现核希尔伯特空间构造反映样本多方面信息的半监督内核,然后基于聚类假设在支持向量机中使用该半监督内核,最后,采用渐进学习过程。在建议的方法中。对公共数据集和煤矿安全数据进行了几次实验,结果表明,与带有监督核的渐进式支持向量机和具有半监督核的标准支持向量机相比,该方法在渐进式支持向量机中使用半监督核的方法具有更好的性能。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号