首页> 外文期刊>Journal of information and computational science >Quotient vs. Difference: Comparison Between the Two Discriminant Criteria in 2DLDA for Face Recognition
【24h】

Quotient vs. Difference: Comparison Between the Two Discriminant Criteria in 2DLDA for Face Recognition

机译:商与差:2DLDA中用于面部识别的两个判别标准之间的比较

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction based on two dimension image matrices projection technique are extensively employed in many face recognition methods. It does not need to transform image matrix into a vector prior for feature extraction so that it is computationally more efficient and can avoid the small sample size problem. Two discriminant criteria - quotient and difference, are commonly used in linear discriminant analysis. The performances of the two dimension linear discriminant analysis based on the two criterion are compared by face recognition experiments on two face databases. The results show that Quotient-2DLDA is usually better than Difference-2DLDA. Through theoretical analysis, the defect of Difference-2DLDA, the correlation among feature vectors is revealed, while they are uncorrelated mutually in Quotient-2DLDA. From this view point the quotient criterion 2DLDA is superior to the difference criterion 2DLDA in general.
机译:基于二维图像矩阵投影技术的特征提取被广泛应用于许多人脸识别方法中。它不需要先将图像矩阵转换为向量即可进行特征提取,因此计算效率更高,并且可以避免样本量小的问题。线性判别分析通常使用两个判别标准-商和差。通过在两个人脸数据库上的人脸识别实验,比较了基于两个准则的二维线性判别分析的性能。结果表明,Quotient-2DLDA通常优于Difference-2DLDA。通过理论分析,揭示了差异2DLDA的缺陷,揭示了特征向量之间的相关性,而在商2DLDA中它们之间是不相关的。从这个角度来看,商标准2DLDA通常优于差异标准2DLDA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号