首页> 外文期刊>Journal of information and computational science >A Quantum-inspired Cooperative Co-evolution Based Minimum Attribute Reduction Algorithm and Its Application in Medical MRI
【24h】

A Quantum-inspired Cooperative Co-evolution Based Minimum Attribute Reduction Algorithm and Its Application in Medical MRI

机译:一种基于量子启发式合作协同进化的最小属性约简算法及其在医学MRI中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel quantum-inspired cooperative co-evolution based minimum attribute reduction algorithm (QCCE-MAR) incorporated into the shuffled frog leaping algorithm is proposed. This algorithm determines to accelerate the convergence speed with multi-state Q-bit representation, and a cooperative co-evolutionary model for attribute reduction among mutual evolution grouped frog memeplexes helps to increase the diversity and avoid prematurity. Each sub-optimal reduction set can be obtained quickly. The QCCE-MAR algorithm is applied into the medical Magnetic Resonance Imaging (MRI) reduction and segmentation in the incomplete electronic patient record system. Some experiments conducted demonstrate this algorithm is better on both quality of solution and computational complexity for minimum attribute reduction than traditional algorithms, and it is more efficient performance for medical MRI reduction and segmentation.
机译:本文提出了一种新的基于量子启发式协同协同进化的最小属性约简算法(QCCE-MAR),该算法被引入到随机蛙跳算法中。该算法确定了以多状态Q位表示来加快收敛速度​​,而用于共同进化分组的青蛙Memeplex之间的属性约简的合作共进化模型有助于增加多样性并避免过早出现。每个次优约简集可以快速获得。 QCCE-MAR算法已应用于不完整电子病历系统中的医学磁共振成像(MRI)缩减和分割中。进行的一些实验表明,与传统算法相比,该算法在最小化属性约简方面在解决方案质量和计算复杂度上都更好,并且在医学MRI约简和分割方面更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号