首页> 外文期刊>Journal of information and computational science >Context-aware Recommendation Algorithm Incorporating Time Information
【24h】

Context-aware Recommendation Algorithm Incorporating Time Information

机译:结合时间信息的上下文感知推荐算法

获取原文
获取原文并翻译 | 示例

摘要

There are two deficiencies in the traditional collaborative filtering recommendation. One is the data sparsity; the other is that the change of user preferences can't be reflected in time. To solve these problems, we propose a context-aware recommendation algorithm incorporating time information. Firstly, a calculating method of the time weight is presented. According to the user's rating time, we assign a different time weight to each rating. Then the time weight is incorporated into the basic matrix model. Secondly, we use the gradient descent method to calculate the matrix and predict the ratings directly based on the results of the matrix factorization. Finally, we conduct experiments on the MovieLens dataset and compare the performance of the proposed algorithm with other algorithms. Experimental results show that our algorithm can achieve higher recommendation accuracy.
机译:传统的协作过滤建议有两个缺陷。一是数据稀疏性;二是数据稀疏性。二是用户偏好的变化不能及时反映出来。为了解决这些问题,我们提出了一种包含时间信息的上下文感知推荐算法。首先提出了时间权重的计算方法。根据用户的评分时间,我们为每个评分分配不同的时间权重。然后将时间权重合并到基本矩阵模型中。其次,我们使用梯度下降法来计算矩阵,并根据矩阵分解的结果直接预测等级。最后,我们在MovieLens数据集上进行了实验,并将该算法与其他算法的性能进行了比较。实验结果表明,该算法可以达到较高的推荐精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号