首页> 外文期刊>Journal of information and computational science >Successive Least Squares Support Vector Machine for Multiple Instance Classification
【24h】

Successive Least Squares Support Vector Machine for Multiple Instance Classification

机译:连续最小二乘支持向量机的多实例分类

获取原文
获取原文并翻译 | 示例

摘要

Multiple instance learning is an important and on-going research subject in machine learning. In this paper, we propose a new successive least squares support vector algorithm for multiple instance classification. The proposed algorithm uses an iterative strategy by solving a linear system of equations and a quadratic programming problem alternatively. Numerical experiments on the benchmark data sets show that the proposed algorithm has promising performance.
机译:多实例学习是机器学习中重要且持续的研究主题。在本文中,我们提出了一种用于多实例分类的新的连续最小二乘支持向量算法。所提出的算法通过迭代求解线性方程组和二次规划问题来使用迭代策略。在基准数据集上的数值实验表明,该算法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号