首页> 外文期刊>Journal of information and computational science >On Optimal Feature Selection Using Intelligent Optimization Methods for Image Steganalysis
【24h】

On Optimal Feature Selection Using Intelligent Optimization Methods for Image Steganalysis

机译:利用智能优化方法进行图像隐写的最优特征选择

获取原文
获取原文并翻译 | 示例

摘要

The purpose of image steganalysis is to detect the presence of hidden messages in cover images. Steganalysis can be considered as a pattern recognition process to decide which class a test image belongs to: the innocent photographic image or the stego-image. We compare harmony search algorithm and particle swarm optimization algorithm based feature selection for image steganalysis. Experiment results show that the proposed hybrid algorithm for feature selection is capable of increasing the testing accuracy of classifying result. The combination of the feature sets extracted with the proposed method is feasible to improve the performance of general steganalysis in a reduced dimension. Experiment results also show that this method has the potential to distinguish different kinds of steganography with the extracted uncorrelated features which contain more discriminatory information.
机译:图像隐写分析的目的是检测封面图像中是否存在隐藏消息。可以将隐写分析视为确定测试图像属于哪一类的模式识别过程:无辜的摄影图像或隐秘图像。我们比较了基于和谐搜索算法和基于粒子群优化算法的特征选择进行图像隐写分析。实验结果表明,提出的混合特征选择算法能够提高分类结果的测试精度。所提出的方法提取的特征集的组合对于提高通用隐写分析的性能是可行的。实验结果还表明,该方法具有利用提取出的包含更多歧视性信息的不相关特征来区分不同类型的隐写术的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号