首页> 外文期刊>Journal of information and computational science >A New Parallel Collision Detection Algorithm Based on Particle Swarm Optimization
【24h】

A New Parallel Collision Detection Algorithm Based on Particle Swarm Optimization

机译:基于粒子群算法的新型并行碰撞检测算法

获取原文
获取原文并翻译 | 示例

摘要

A new parallel collision detection algorithm based on Particle Swarm Optimization (PSO) is proposed in the paper. The collision detection problem is transformed to the optimization problems of the space formed by the number of characteristics of the two models. Using the intelligent search features of the PSO algorithm, the search process of the local minimum characteristics is completed during collision detection. The optimization model is fully parallel by dividing polyhedron algorithm. The parallel method improves the detection speed for further step. The test results show the collision detection algorithm based on PSO can improve time efficiency. With the application of parallel technology, the detection speed can be further improved by adjusting the number of computer nodes.
机译:提出了一种新的基于粒子群算法的并行碰撞检测算法。碰撞检测问题转化为由两个模型的特征数量形成的空间的优化问题。使用PSO算法的智能搜索功能,可以在碰撞检测过程中完成局部最小特征的搜索过程。通过划分多面体算法,优化模型是完全并行的。并行方法提高了进一步步骤的检测速度。测试结果表明,基于PSO的碰撞检测算法可以提高时间效率。随着并行技术的应用,通过调整计算机节点的数量可以进一步提高检测速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号