首页> 外文期刊>Journal of information and computational science >Study of On-line Paper Defect Inspection Method Based on Visual Attention Model
【24h】

Study of On-line Paper Defect Inspection Method Based on Visual Attention Model

机译:基于视觉注意模型的在线纸张缺陷检测方法研究

获取原文
获取原文并翻译 | 示例

摘要

Due to massive information and a high density of noise included in on-line web inspection detection system, a on-line paper defect Inspection method based on visual attention model is presented in this paper. Firstly, low-level of image feature at different scales are analyzed in the frequency domain. Then some corresponding salient maps are constructed, and combined into a salient image with normalization and linear-fusion in the spatial domain. Secondly, one viewpoints is found and used as the seed point for region growing in the image. After region growing, a paper defect region is extracted from background according to some rules. At last geometrical features and gray features of defect region are extracted, and imported into neural network for classifying paper defects. The experimental results showed that the method had high identification rate, and performed well even in on-line paper images with a high density of noise.
机译:鉴于在线卷材检测系统中包含的信息量大,噪声密度高,提出了一种基于视觉注意模型的在线纸张缺陷检测方法。首先,在频域中分析了不同尺度下的低水平图像特征。然后构造一些相应的显着图,并在空间域中通过归一化和线性融合将其组合成显着图像。其次,找到一个视点并将其用作图像中区域生长的种子点。区域生长后,根据一些规则从背景中提取出纸张缺陷区域。最后提取缺陷区域的几何特征和灰度特征,并将其输入到神经网络中以对纸缺陷进行分类。实验结果表明,该方法具有较高的识别率,并且即使在具有高噪声密度的在线纸张图像中也表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号