首页> 外文期刊>Journal of information and computational science >Data-driven Decision Tree Learning Algorithm Based on Data Relativity
【24h】

Data-driven Decision Tree Learning Algorithm Based on Data Relativity

机译:基于数据相关性的数据驱动决策树学习算法

获取原文
获取原文并翻译 | 示例

摘要

For the research of most process of data mining, it is essentially a process of transformation of representation of knowledge, the basic characteristics of the data is the basic law in the process of mining that, wo must follow. This paper which is based on rough set theory finds the relationship of these two forms of knowledge by defining the relevance of decision tables and decision rules and proposes data-driven Decision Tree Learning Algorithm Based on Data Relativity (DTLADR). Simulation results show that the method is effective and feasible.
机译:对于大多数数据挖掘过程的研究,本质上是知识表示转换的过程,数据的基本特征是必须遵循的挖掘过程中的基本规律。本文基于粗糙集理论,通过定义决策表和决策规则的相关性,找到了这两种知识形式之间的关系,并提出了一种基于数据相对性的数据驱动决策树学习算法(DTLADR)。仿真结果表明该方法是有效可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号