首页> 外文期刊>Journal of information and computational science >Graph Construction Based on Re-weighted Sparse Representation for Semi-supervised Learning
【24h】

Graph Construction Based on Re-weighted Sparse Representation for Semi-supervised Learning

机译:基于重加权稀疏表示的半监督学习图构造

获取原文
获取原文并翻译 | 示例

摘要

Graph construction is the key part of graph-based semi-supervised learning algorithms, and the performance of algorithms depends heavily on the graph weight matrix given by graph construction process. In this paper, we propose a modified L1 graph construction model based on the distance of sample pairs. The solutions of the proposed method include the distance of sample pairs to improve the accuracy. Numerical experiments on face dataaets indicate that the results yielded by the proposed algorithm perform better than the algorithms based on traditional graph construction methods and L1 graph.
机译:图的构造是基于图的半监督学习算法的关键部分,其性能在很大程度上取决于图构造过程给出的图权矩阵。在本文中,我们基于样本对的距离提出了一种改进的L1图构建模型。该方法的解决方案包括增加样本对的距离,以提高准确性。对人脸数据的数值实验表明,与基于传统图构造方法和L1图的算法相比,所提算法的性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号