首页> 外文期刊>Journal of information and computational science >Hybrid Solving for Quantified Boolean Formulas Based on SVM and Reinforcement Learning
【24h】

Hybrid Solving for Quantified Boolean Formulas Based on SVM and Reinforcement Learning

机译:基于SVM和强化学习的布尔公式混合求解。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a now SVM classification algorithm is proposed, this algorithm is applied in Quantified Boolean Formulas (QBF) hybrid solving and a new QBF hybrid solver is designed. This solver apply SVM algorithm to construct inductive models and classify the formulae. At the same time, the reinforcement learning technology is applied to realize the dynamic algorithm selection. The relationship between the solving algorithm and formula is established according to test formula set and Run-time performance. When the first heuristic fails in resolving the formula, the Reinforcement Learning procedure can select another solving algorithm automatically. It can drastically improve the performance of a QBF solver and resolve more numerous formulas than sequential QBF Solver. It proved that non-linear prediction models based on SVM and the reinforcement learning are very useful in formulae classification and online algorithm switch. It is believed that machine learning technology can be helpful to a much larger degree when solving hard problems.
机译:本文提出了一种目前支持向量机的分类算法,该算法被应用于量化布尔公式(QBF)混合求解,并设计了一种新的QBF混合求解器。该求解器应用SVM算法构造归纳模型并对公式进行分类。同时,采用强化学习技术实现动态算法选择。根据测试公式集和运行时性能建立求解算法与公式之间的关系。当第一个试探法无法解析公式时,强化学习过程可以自动选择其他求解算法。与顺序QBF求解器相比,它可以大大改善QBF求解器的性能并解析更多公式。实践证明,基于支持向量机和增强学习的非线性预测模型在公式分类和在线算法转换中非常有用。人们认为,机器学习技术在解决难题时可以提供更大的帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号