首页> 外文期刊>Journal of information and computational science >An Outlier Detection Method with Wavelet HMM for UUV Prediction Following
【24h】

An Outlier Detection Method with Wavelet HMM for UUV Prediction Following

机译:基于小波HMM的UUV预测异常检测方法。

获取原文
获取原文并翻译 | 示例

摘要

An inertia algorithm of outlier detection based on wavelet HMM (Hidden Markov Model) is proposed in this paper to handle with the inaccurate original data collected from sensors for UUV predictive following control. The Improved Recursive Wavelet Transform (IRWT) is used to reconstruct the original data and amplify the wavelet coefficients of outliers locally. Wavelet coefficients are updated with historical coefficients of data; therefore, it can be implemented in real-time. A distribution decision function is defined by HMM, which is the basis of pre-outliers detection that obviously different from normal data. The pre-outliers are redetected using inertia algorithm to improve the accuracy of results detected. Original data from lake experiment verify effectiveness and feasibility of the method proposed.
机译:提出了一种基于小波HMM(隐马尔可夫模型)的离群值检测惯性算法,以处理从传感器中收集到的不准确的原始数据进行UUV预测跟随控制。改进的递归小波变换(IRWT)用于重建原始数据并局部放大离群值的小波系数。用数据的历史系数更新小波系数;因此,它可以实时实现。 HMM定义了分布决策函数,这是异常值之前检测的基础,该异常值明显不同于正常数据。使用惯性算法对异常前值进行重新检测,以提高检测结果的准确性。湖泊实验的原始数据验证了该方法的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号