首页> 外文期刊>Journal of information and computational science >Signal Recognition Algorithm Based on Random Forests for Spectrum Sensing in Cognitive Network
【24h】

Signal Recognition Algorithm Based on Random Forests for Spectrum Sensing in Cognitive Network

机译:认知网络中基于随机森林的频谱感知信号识别算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach to signal recognition combining spectral correlation analysis and random forests is introduced to solve the problem of the low accuracy on detection and modulation type recognition of the weak Primary Users (PU) in low signal-to-noise ratio. Three spectral coherence character- istic parameters are chosen via spectral correlation analysis. By utilizing the proposed algorithm, the detecting signals are classified by the trained random forests, which use the Gini index as the classification criteria, to test whether the primary user exists and recognize the modulation type of the signal. The proposed algorithm enhanced the performance of the classification by utilizing the strong classifier synthesizing multiple weak classifiers and the accuracy of spectral correlation analysis method, so it is more suitable for primary user signal detection and recognition under low SNR environment. The performance is evaluated through simulations and compared with ANN and SVM algorithms. The advantages of the proposed algorithm are also shown through simulations.
机译:本文提出了一种将频谱相关分析和随机森林相结合的信号识别新方法,以解决信噪比低的弱主用户(PU)检测和调制类型识别精度不高的问题。通过光谱相关分析选择了三个光谱相干特征参数。通过利用所提出的算法,将检测到的信号由经过训练的随机森林进行分类,并使用基尼指数作为分类标准,以测试主要用户是否存在并识别信号的调制类型。该算法利用强分类器综合了多个弱分类器,提高了分类性能,并具有频谱相关分析方法的准确性,更适合于低信噪比环境下的主用户信号检测和识别。通过仿真评估性能,并与ANN和SVM算法进行比较。仿真结果也表明了该算法的优势。

著录项

  • 来源
    《Journal of information and computational science》 |2014年第8期|2551-2558|共8页
  • 作者单位

    College of Information Science and Engineering, Northeastern University, Shenyang 110004, China,Information & Control Engineering Faculty, Shenyang Jianzhu University, Shenyang 110168, China;

    College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;

    College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;

    College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cognitive Network; Random Forest; Gini Index; Spectral Correlation Feature;

    机译:认知网络;随机森林基尼系数光谱相关特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号