首页> 外文期刊>Journal of information and computational science >The Followee Recommendation Algorithm Based on Microblog User Interest and Characteristic
【24h】

The Followee Recommendation Algorithm Based on Microblog User Interest and Characteristic

机译:基于微博用户兴趣和特征的追随者推荐算法

获取原文
获取原文并翻译 | 示例

摘要

Different from conventional social networks and e-commerce systems, microblog community is unique for its low user activity, data sparsity and dynamic of user's interests. Because of these challenges, conventional recommendation algorithms cannot get a satisfactory performance in microblog community. This paper proposes a microblog followee recommendation algorithm based on user interest degree and attribute characteristics after analyzing the structure of microblog recommendation, and this algorithm is mainly on the basis of user_cf recommendation algorithm to recommend new followee to user. Firstly, group users through calculating users interest degree to followee; Secondly, get users' preferences value to followee with Bayesian algorithm when they are with different attribute characteristics; Finally, calculate target user's nearest neighbor set using a new optimized similarity degree method to form the recommendation list. Experiments show that this proposed algorithm enhances the effectiveness and accuracy of the nearest neighbor set, and the recommendation quality has significantly improvement compared with previous algorithm.
机译:与传统的社交网络和电子商务系统不同,微博客社区以其低用户活动性,数据稀疏性和用户兴趣的动态性而独特。由于这些挑战,传统的推荐算法无法在微博社区中获得令人满意的性能。在分析了微博推荐结构之后,提出了一种基于用户兴趣度和属性特征的微博关注者推荐算法,该算法主要基于user_cf推荐算法向用户推荐新的关注者。首先,通过计算用户对追随者的兴趣度来对用户进行分组。其次,当用户具有不同的属性特征时,利用贝叶斯算法获得用户的偏好值。最后,使用新的优化的相似度方法计算目标用户的最近邻居集,以形成推荐列表。实验表明,该算法提高了最近邻集的有效性和准确性,与以前的算法相比,推荐质量有明显提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号