首页> 外文期刊>Journal of information and computational science >Two-population Shuffled Frog Leaping Algorithm Based on Bio-parasitic Behavior
【24h】

Two-population Shuffled Frog Leaping Algorithm Based on Bio-parasitic Behavior

机译:基于生物寄生行为的两种群混洗蛙跳算法

获取原文
获取原文并翻译 | 示例

摘要

A two-population shuffled frog leaping algorithm based on bio-parasitic behavior is proposed to solve the problems of the original algorithm, such as non-uniform initial population, low search precision and easiness in falling into local optimum. It consists of the host and the parasite population. The mechanism of facultative parasitic behavior is incorporated into the algorithm. The two populations exchange particles according to individuals fitness value at intervals of a certain number of iterations, so as to realize the parallel evolution and cooperative search. The algorithm constructs the initial population with chaos theory. Furthermore, an adaptive factor is designed to adjust the moving step of the frogs. Experimental results show that the new algorithm has a better convergence result and higher solution accuracy.
机译:提出了一种基于生物寄生行为的两种群混洗蛙跳算法,解决了初始算法种群不均,搜索精度低,不易陷入局部最优等问题。它由宿主和寄生虫种群组成。兼性寄生行为的机制已纳入算法。两个种群根据个体适应度值以一定的迭代次数交换粒子,从而实现并行进化和协同搜索。该算法利用混沌理论构造初始种群。此外,设计了一个自适应因子来调整青蛙的移动步幅。实验结果表明,该算法具有较好的收敛效果和较高的求解精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号