首页> 外文期刊>Journal of information and computational science >Vehicle-logo Recognition Algorithm Based on Convolutional Neural Network
【24h】

Vehicle-logo Recognition Algorithm Based on Convolutional Neural Network

机译:基于卷积神经网络的车标识别算法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, machine vision has been widely used in Intelligent Transportation Systems via detecting, tracking and recognizing the vehicle information. The vehicle logo is regarded as the key feature insides the intelligent traffic management system and plays an important role of vehicle information discrimination. Convolutional Neural Network (CNN) is a kind of neural network with multi-level structure. It can effectively improve the robustness of the changes of vehicle logo within different conditions, e.g., being rotated and transformed in scales. This paper proposes a vehicle logo recognition system based on CNN, and compares its performance with the others. The experimental results show that this method can effectively improve the recognition rate of the vehicle logo.
机译:近年来,机器视觉通过检测,跟踪和识别车辆信息已被广泛应用于智能交通系统中。车辆徽标被视为智能交通管理系统内部的关键特征,在车辆信息识别中起着重要作用。卷积神经网络(CNN)是一种具有多层结构的神经网络。它可以有效地提高在不同条件下(例如按比例旋转和变换)车辆徽标变化的鲁棒性。本文提出了一种基于CNN的车辆标志识别系统,并将其性能与其他系统进行了比较。实验结果表明,该方法可以有效提高车辆标识的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号