首页> 外文期刊>Journal of information and computational science >A New Sparse Signal Reconstruction Algorithm for Compressed Sensing Based on l_p Norm
【24h】

A New Sparse Signal Reconstruction Algorithm for Compressed Sensing Based on l_p Norm

机译:基于l_p范数的压缩感知稀疏信号重构新算法

获取原文
获取原文并翻译 | 示例

摘要

The theory of compressed sensing allows the reconstruction of sparse signals with much fewer measurements than traditionally believed. In this paper, a new reconstruction algorithm, which is based on the optimization of l_p-norm, is proposed. The new algorithm combines the Penalty Function (PF) method and the Sequential Quadratic Programming (SQP) method. It not only takes advantage of these two methods' merits but also overcomes the disadvantages of them. Also, signal reconstruction based on l_p-norm in compressed sensing reduces the redundancy among data to some extent and effectively decreases the number of measurements required to reconstruct the original signal. Simulation results show that the new algorithm offers improved signal reconstruction performance.
机译:压缩感测理论允许以比传统方式少得多的测量值来重建稀疏信号。提出了一种基于l_p范数优化的重构算法。新算法结合了罚函数(PF)方法和顺序二次规划(SQP)方法。它不仅利用了这两种方法的优点,而且克服了它们的缺点。而且,基于压缩感测中的l_p范数的信号重构在某种程度上减少了数据之间的冗余,并有效地减少了重构原始信号所需的测量次数。仿真结果表明,新算法具有更好的信号重构性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号