首页> 外文期刊>Journal of information and computational science >Collaborative Filtering Algorithm Based on Item Semantic and User Characteristics
【24h】

Collaborative Filtering Algorithm Based on Item Semantic and User Characteristics

机译:基于项目语义和用户特征的协同过滤算法

获取原文
获取原文并翻译 | 示例

摘要

The traditional Collaborative Filtering (CF) algorithm has the weakness of data sparseness and cold-start. Aiming at the problem, this paper presents a CF algorithm by combining item semantic and user characteristics. First, the method combines the similarity of user rating with user characteristics to get the user neighbors and calculate the user forecast rating. Meanwhile, it combines the similarity of item rating with item semantic to get the item neighbors and compute the item prediction rating. Then, the final recommendation is got by combining user forecast rating with item prediction rating. Experimental results show that this algorithm can alleviate data sparsity, by way of reducing cold-start problem and increasing prediction accuracy.
机译:传统的协同过滤(CF)算法具有数据稀疏和冷启动的弱点。针对该问题,本文提出了一种结合项目语义和用户特征的CF算法。首先,该方法将用户评分的相似性与用户特征相结合,以获取用户邻居并计算用户预测评分。同时,将项目评价的相似度与项目语义相结合,得到项目邻居,计算项目预测评价。然后,通过将用户预测等级与项目预测等级相结合来获得最终推荐。实验结果表明,该算法通过减少冷启动问题和提高预测精度,可以减轻数据稀疏性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号