首页> 外文期刊>Journal of information and computational science >Design and Experimental Study of Fire Warning System for Data Fusion
【24h】

Design and Experimental Study of Fire Warning System for Data Fusion

机译:数据融合火灾预警系统的设计与实验研究

获取原文
获取原文并翻译 | 示例

摘要

A fuzzy neural network based on data fusion technology applied in alarm systems is presented and utilized as a classifier. The performance of this network is compared with that of networks that employ BP and RBF as a classifier. Such comparison is conducted with a fire alarm system. To ensure the accuracy of the fire alarm system, American standard test data are employed. Results show that the proposed fusion model can provide fire warning rapidly and accurately and can effectively reduce the number of false alarms and alarm failure.
机译:提出了一种基于数据融合技术的模糊神经网络应用于报警系统,并作为分类器。将该网络的性能与采用BP和RBF作为分类器的网络的性能进行比较。这种比较是通过火灾报警系统进行的。为了确保火灾报警系统的准确性,采用了美国标准测试数据。结果表明,所提出的融合模型能够快速,准确地提供火灾预警,并能有效减少误报和报警失败的次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号