首页> 外文期刊>Journal of information and computational science >Feature Fusion Based Image Retrieval Using Deep Learning
【24h】

Feature Fusion Based Image Retrieval Using Deep Learning

机译:使用深度学习的基于特征融合的图像检索

获取原文
获取原文并翻译 | 示例

摘要

In the last decades, Content Based Image Retrieval and image classification have become popular, and among them Region-based Image Retrieval is quite active. More and more descriptors and retrieval methods have been proposed and investigated in order to improve the retrieval performance. This paper proposed a feature fusion deep learning method. The features including colors, texture and shape, which are extracted from both the entire image and regions. The features are then trained using diverse deep learning methods. The-conducted deep learning methods include Sparse Auto-encoders, Denoising Auto-encoding, Deep Belief Nets, Drop Out Neural Networks, and Deep Boltzmann Machine. The method is evaluated through extensive experiments on Corel 10K datasets. Experimental results demonstrate that the introduced methods are comparable with the state-of-arts in this image retrieval application.
机译:在过去的几十年中,基于内容的图像检索和图像分类已变得很流行,其中基于区域的图像检索非常活跃。为了提高检索性能,提出并研究了越来越多的描述符和检索方法。本文提出了一种特征融合深度学习方法。从整个图像和区域中提取的特征包括颜色,纹理和形状。然后使用各种深度学习方法来训练功能。进行的深度学习方法包括稀疏自动编码器,降噪自动编码,深度信念网,辍学神经网络和深度玻尔兹曼机。通过在Corel 10K数据集上进行的广泛实验评估了该方法。实验结果表明,引入的方法可与该图像检索应用程序中的最新技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号