首页> 外文期刊>Journal of information and computational science >A New Scene Classification Method Based on Spatial Pyramid Matching Model
【24h】

A New Scene Classification Method Based on Spatial Pyramid Matching Model

机译:基于空间金字塔匹配模型的场景分类新方法

获取原文
获取原文并翻译 | 示例

摘要

Scene classification is an appealing and challenging problem in image processing and machine vision. Recently, Bag-of-visual-words (BOVW) method using pyramid matching scheme has shown remarkable performance for scene classification. But this method deriving from local keypoints does not contain texture features which are rich in scene images. To further improves the classification accuracy, this paper presents a new method combining Rotation Invariant Local Binary Patterns (RILBP) texture features and BOVW model in spatial pyramid matching framework. First, scene image is subdivided at different resolutions for constructing a spatial pyramid. Then based on scale invariant feature transform descriptor and K-means clustering, Pyramid Histogram of visual Words (PHOW) is extracted. And RILBP texture feature is extracted using the mean of a 3*3 neighborhood as threshold. Last we construct a composite kernel of spatial pyramid matching. We regard the keypoint features and texture features as two independent feature channels, and combine them to realize scene classification using one-against-rest SVMs with the composite kernel. Experiments results on the three different scene datasets show that our method is effective.
机译:场景分类是图像处理和机器视觉中一个吸引人且具有挑战性的问题。近来,使用金字塔匹配方案的视觉词袋(BOVW)方法在场景分类方面表现出了卓越的性能。但是,从局部关键点派生的此方法不包含场景图像中丰富的纹理特征。为了进一步提高分类精度,本文提出了一种在空间金字塔匹配框架中结合旋转不变局部二值图案(RILBP)纹理特征和BOVW模型的新方法。首先,以不同的分辨率细分场景图像,以构建空间金字塔。然后基于尺度不变特征变换描述符和K-means聚类,提取视觉单词金字塔直方图(PHOW)。然后使用3 * 3邻域的平均值作为阈值来提取RILBP纹理特征。最后,我们构造了一个空间金字塔匹配的复合内核。我们将关键点特征和纹理特征视为两个独立的特征通道,并将它们组合在一起,以使用多对一SVM和复合内核实现场景分类。在三个不同场景数据集上的实验结果表明,该方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号