首页> 外文期刊>Journal of information and computational science >The Application of Modified Generalized Dynamic Fuzzy Neural Network (M-GDFNN) in Adaptive Noise Cancellation
【24h】

The Application of Modified Generalized Dynamic Fuzzy Neural Network (M-GDFNN) in Adaptive Noise Cancellation

机译:改进的广义动态模糊神经网络(M-GDFNN)在自适应噪声消除中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a modified generalized dynamic fuzzy neural network (M-GDFNN) for the application of Adaptive Noise Cancellation (ANC). As system error cannot be evaluated on-line in ANC, ε-Completeness of fuzzy rules is selected as the only criteria of fuzzy rules generation in this novel algorithm. To improve system performance, a simple Self-organizing Mapping (SOM) technique is introduced to adjust the center clustering. Additionally, Eigenvalue Decomposition (ED) method is applied to prune unimportant rules. In the last part of this paper, simulation studies illustrate that proposed M-GDFNN is able to achieve better results compared with ANFIS and standard GDFNN in noise cancellation thus prove the suitability of proposed M-GDFNN in the field of ANC.
机译:针对自适应噪声消除(ANC)的应用,提出了一种改进的广义动态模糊神经网络(M-GDFNN)。由于不能在ANC中在线评估系统误差,因此在这种新算法中,选择模糊规则的ε-完全性作为模糊规则生成的唯一标准。为了提高系统性能,引入了一种简单的自组织映射(SOM)技术来调整中心聚类。此外,特征值分解(ED)方法适用于修剪不重要的规则。仿真研究表明,与ANFIS和标准GDFNN相比,所提出的M-GDFNN能够在噪声消除方面取得更好的效果,从而证明了所提出的M-GDFNN在ANC领域的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号