首页> 外文期刊>Journal of information and computational science >An Improved Mean Shift Algorithm for Target Tracking
【24h】

An Improved Mean Shift Algorithm for Target Tracking

机译:一种改进的均值漂移目标跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

Mean Shift algorithm is a non-parametric kernel density estimation based on the color histogram. It is a traditional algorithm of target tracking and is wildly used in the video monitoring for its simple calculation and lower time complexity. But it is inapplicable to the target that moves fast. In view of the fact, we propose a novel algorithm combining the bandwidth trial with the traditional algorithm in this paper. It is utilized to solve the problem of fast moving target tracking by comparing the Bhattacharyya coefficients to change the bandwidth of the kernel function automatically. Results of experiments indicate that the proposed algorithm not only can track the target more accurately, but also reduce the number of iteration.
机译:均值漂移算法是基于颜色直方图的非参数内核密度估计。它是一种传统的目标跟踪算法,由于其计算简单,时间复杂度低而广泛用于视频监控。但这不适用于快速移动的目标。有鉴于此,本文提出了一种结合带宽试验和传统算法的新型算法。它通过比较Bhattacharyya系数以自动更改内核函数的带宽来解决快速移动目标跟踪的问题。实验结果表明,该算法不仅可以更精确地跟踪目标,而且可以减少迭代次数。

著录项

  • 来源
  • 作者单位

    Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

    Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

    Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mean Shift; Target Tracking; Bandwidth Trial; Fast Moving;

    机译:平均移动目标跟踪;带宽试用;快速移动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号