首页> 外文期刊>Journal of information and optimization sciences >K-means clustering based photo voltaic power forecasting using artificial neural network, particle swarm optimization and support vector regression
【24h】

K-means clustering based photo voltaic power forecasting using artificial neural network, particle swarm optimization and support vector regression

机译:基于K均值聚类的人工神经网络,粒子群优化和支持向量回归的光伏功率预测

获取原文
获取原文并翻译 | 示例

摘要

With the increasing global warming and enormous pollution, it is very obvious to generate power from renewable energy sources. In fact, photo voltaic (PV) power is a main renewable energy source for sustainable power generation. But PV power generation is uncertain and intermittent in nature. Stable and reliable power supply may not be feasible with PV power. Power supply reliability is important as much as its availability. To handle the inconsistency of PV power generation, power sector is highly dependent on forecasting methods and techniques. In this paper the feed forward neural network (FFNN) of artificial neural networks(ANN) with optimization technique particle swarm optimization (PSO) and support vector regression (SVR) are used in short term PV power generation forecasting and their performance is compared with the error calculation in terms of the mean absolute error (MAE) and root mean squared error (RMSE). The PV power and meteorological data of solar irradiation and temperature of Kolkata region of India was used for forecasting. Similar days of the year sunny days, cloudy days and rainy days are clustered using k-means clustering technique. Thereafter, a feed forward neural network is implemented to forecast a day head PV power and week ahead photo voltaic power. PSO is used to optimize the weights of the neural network. The performance of the proposed forecasting method is compared to a data mining approach, support vector regression (SVR).In this paper, the significance of proper selection of input parameters in PV power forecasting is emphasized. With the application of K-means clustering, the accuracy of ANN-PSO approach is improved significantly in a day ahead PV power forecasting and a week ahead PV power forecasting with a good margin.Even the accuracy of ANN-PSO approach after K-means clustering is better than SVR model in a week ahead forecasting.
机译:随着全球变暖的加剧和巨大的污染,从可再生能源中发电非常明显。实际上,光伏(PV)功率是用于可持续发电的主要可再生能源。但是光伏发电本质上是不确定的和断断续续的。光伏电源可能无法提供稳定可靠的电源。电源可靠性与其可用性一样重要。为了解决光伏发电的矛盾,电力部门高度依赖于预测方法和技术。本文将具有优化技术,粒子群优化(PSO)和支持向量回归(SVR)的人工神经网络(ANN)的前馈神经网络(FFNN)用于短期PV发电预测,并将其性能与根据平均绝对误差(MAE)和均方根误差(RMSE)进行误差计算。利用印度加尔各答地区的太阳辐射和温度的光伏发电和气象数据进行预报。使用k均值聚类技术将一年中的相似天晴天,阴天和雨天进行聚类。此后,实施前馈神经网络以预测日头PV功率和一周前的光伏功率。 PSO用于优化神经网络的权重。将所提出的预测方法的性能与数据挖掘方法,支持向量回归(SVR)进行了比较。本文着重强调了正确选择输入参数在光伏发电预测中的意义。随着K-means聚类的应用,ANN-PSO方法的准确性在提前一天进行PV功率预测和提前一周进行PV功率预测方面都有了很大的提高。在提前一周的预测中,聚类优于SVR模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号