首页> 外文期刊>Journal of Hydroinformatics >An artificial intelligence approach for optimizing pumping in sewer systems
【24h】

An artificial intelligence approach for optimizing pumping in sewer systems

机译:一种用于优化下水道系统中抽水的人工智能方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents details of a fuzzy logic system developed for the control of sewer pumpingnstations for energy costs savings. This is part of an ongoing collaborative project between AngliannWater and the University of Sheffield. The model rules and operation are developed for onenrepresentative pumping station in order to enable the identification of potential benefits andninhibitors to Anglian Water. Results are included that demonstrate the potential for energyncost-savings by application to a single pumping station for dry weather flow conditions andnthrough comparison to current on/off switching rules. The fuzzy system is shown to be robustnto changes in flow pattern (using both modelled inflow data and real data from a flow survey), butnsensitive to changes in price structures. Application of a genetic algorithm (GA) search techniquenwas used to adjust the parameters that define the membership functions in the fuzzy rules, innorder to provide automated minimization of the energy costs towards an optimal solution. ThenGA system is shown to be transferable to another pumping station with different pump sizes,nwet well capacity and inflow pattern. The GA solution outperformed the base case in terms ofnenergy costs and switching totals.
机译:本文介绍了为控制下水道泵站而开发的模糊逻辑系统的详细信息,以节省能源成本。这是AngliannWater与谢菲尔德大学正在进行的合作项目的一部分。为代表性的泵站开发了模型规则和操作,以便能够确定对安联水务的潜在利益和抑制因素。包括的结果表明,通过将其应用于单个泵站以应对干燥的天气条件,并通过与当前的通/断切换规则进行比较,可以节省能源成本。模糊系统显示出对流量模式的变化具有鲁棒性(使用建模的流入数据和流量调查的真实数据),但是对价格结构的变化不敏感。遗传算法(GA)搜索技术的应用用于调整在模糊规则中定义隶属函数的参数,从而自动地将能源成本最小化,以达到最佳解决方案。然后表明GA系统可转移到另一个具有不同泵尺寸,湿井容量和流入方式的泵站。 GA解决方案在能源成本和转换总额方面均胜过基本情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号