首页> 外文期刊>Journal of Heat Transfer >Phonon Heat Conduction in Multidimensional Heterostructures: Predictions Using the Boltzmann Transport Equation
【24h】

Phonon Heat Conduction in Multidimensional Heterostructures: Predictions Using the Boltzmann Transport Equation

机译:多维异质结构中的声子导热:使用玻尔兹曼输运方程的预测

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, two models for phonon transmission across semiconductor interfaces are investigated and demonstrated in the context of large-scale spatially three-dimensional calculations of the phonon Boltzmann transport equation (BTE). These include two modified forms of the classical diffuse mismatch model (DMM): one, in which dispersion is accounted for and another, in which energy transfer between longitudinal acoustic (LA) and transverse acoustic (TA) phonons is disallowed. As opposed to the vast majority of the previous studies in which the interface is treated in isolation, and the thermal boundary conductance is calculated using closed-form analytical formulations, the present study also considers the interplay between the interface and intrinsic (volumetric) scattering of phonons. This is accomplished by incorporating the interface models into a parallel solver for the full seven-dimensional BTE for phonons. A verification study is conducted in which the thermal boundary resistance of a siliconlgermanium interface is compared against the previously reported results of molecular dynamics (MD) calculations. The BTE solutions overpredicted the interfacial resistance, and the reasons for this discrepancy are discussed. It is found that due to the interplay between intrinsic and interface scattering, the interfacial thermal resistance across a Si(hot)/Ge(cold) bilayer is different from that of a Si(cold)IGe(hot) bilayer. Finally, the phonon BTE is solved for a nanoscale three-dimensional heterostructure, comprised of multiple blocks of silicon and germanium, and the time evolution of the temperature distribution is predicted and compared against predictions using the Fourier law of heat conduction.
机译:在本文中,在声子玻尔兹曼输运方程(BTE)的大规模空间三维计算的背景下,研究和证明了两种声子在半导体界面上传输的模型。这些包括经典弥散失配模型(DMM)的两种修改形式:一种解释了色散,另一种解释了不允许纵向声子(LA)和横向声子(TA)声子之间的能量转移。与以前的大多数研究中的界面被隔离处理并且使用封闭形式的分析公式计算热边界电导相反,本研究还考虑了界面与内在(体积)散射之间的相互作用。声子。这是通过将接口模型合并到用于声子的完整7维BTE的并行求解器中来实现的。进行了一项验证研究,其中将硅锗界面的热边界电阻与先前报道的分子动力学(MD)计算结果进行了比较。 BTE解决方案高估了界面阻力,并讨论了造成这种差异的原因。发现由于固有散射和界面散射之间的相互作用,跨Si(热)/ Ge(冷)双层的界面热阻不同于Si(冷)IGe(热)双层的界面热阻。最后,对声子BTE求解了由硅和锗的多个嵌段组成的纳米级三维异质结构,并预测了温度分布的时间演变并将其与使用热傅立叶定律进行的预测相比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号