首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >PREDICTION OF NON-EQUILIBRIUM HEAT CONDUCTION USING PARALLEL COMPUTATION OF THE PHONON BOLTZMANN TRANSPORT EQUATION
【24h】

PREDICTION OF NON-EQUILIBRIUM HEAT CONDUCTION USING PARALLEL COMPUTATION OF THE PHONON BOLTZMANN TRANSPORT EQUATION

机译:使用Phonon Boltzmann传输方程的平行计算预测非平衡热传导

获取原文

摘要

Non-equilibrium heat conduction, as occurring in modern-day sub-micron semiconductor devices, can be predicted effectively using the Boltzmann Transport Equation (BTE) for phonons. In this article, strategies and algorithms for large-scale parallel computation of the phonon BTE are presented. An unstructured finite volume method for spatial discretization is coupled with the control angle discrete ordinates method for angular discretization. The single-time relaxation approximation is used to treat phonon-phonon scattering. Both dispersion and polarization of the phonons are accounted for. Three different parallelization strategies are explored: (a) band-based, (b) direction-based, and (c) hybrid band/cell-based. Subsequent to validation studies in which silicon thin-film thermal conductivity was successfully predicted, transient simulations of non-equilibrium thermal transport were conducted in a three-dimensional device-like silicon structure, discretized using 604,054 tetrahedral cells. The angular space was discretized using 400 angles, and the spectral space was discretized into 40 spectral intervals (bands). This resulted in ~9.7×10~9 unknowns, which are approximately 3 orders of magnitude larger than previously reported computations in this area. Studies showed that direction-based and hybrid band/cell-based parallelization strategies resulted in similar total computational time. However, the parallel efficiency of the hybrid band/cell-based strategy - about 88% - was found to be superior to that of the direction-based strategy, and is recommended as the preferred strategy for even larger scale computations.
机译:在现代亚微米半导体器件中发生非平衡的热传导,可以使用Boltzmann传输方程(BTE)进行有效地预测声子。在本文中,呈现了策略和算法,用于大规模并行计算Phonon BTE。用于空间离散化的非结构化有限体积方法与用于角度离散化的控制角离散坐标方法耦合。单时间放松近似用于治疗声子位散射。考虑声子的色散和极化。探索了三种不同的并行化策略:(a)基于乐队,(b)基于方向的,(c)混合带/小区。在成功预测硅薄膜导热率的验证研究之后,在三维器件状硅结构中进行非平衡热传输的瞬态模拟,使用604,054四偏细胞离子化。角度空间使用400角度离散化,并且将光谱空间离散化为40个光谱间隔(带)。这导致〜9.7×10〜9个未知数,比以前报道的计算大约3个数量级。研究表明,基于方向和混合带/小区的并行化策略导致了相似的总计算时间。然而,混合带/小区的策略的并行效率 - 发现约88% - 被发现优于基于方向的策略,并建议作为甚至更大尺度计算的优选策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号