首页> 外文期刊>Journal of Heat Transfer >Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces
【24h】

Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces

机译:基于结构表面的Galinstan基微间隙冷却增强分析

获取原文
获取原文并翻译 | 示例
       

摘要

Analyses of microchannel and microgap cooling show that galinstan, a recently developed nontoxic liquid metal that melts at -19℃, may he more effective than water for direct liquid cooling of electronics. The thermal conductivity of galinstan is nearly 28 times that of water. However, since the volumetric specific heat of galinstan is about half that of water and its viscosity is 2.5 times that of water, caloric, rather than convective, resistance is dominant. We analytically investigate the effect of using structured surfaces (SSs) to reduce the overall thermal resistance of galinstan-based microgap cooling in the laminar flow regime. Significantly, the high surface tension of galinstan, i.e., 7 times that of water, implies that it can be stable in the nonwetting Cassie state at the requisite pressure differences for driving flow through microgaps. The flow over the SS encounters a limited liquid-solid contact area and a low viscosity gas layer interposed between the channel walls and galinstan. Consequent reductions in friction factor result in decreased caloric resistance, but accompanying reductions in Nusselt number increase convective resistance. These are accounted for by expressions in the literature for apparent hydrody-namic and thermal slip. We develop a dimensionless expression to evaluate the tradeoff between the pressure stability of the liquid-solid-gas system and hydrodynamic slip. We also consider secondary effects including entrance effects and temperature dependence of thermophysical properties. Results show that the addition of SSs enhances heat transfer.
机译:对微通道和微间隙冷却的分析表明,Galinstan是一种新近开发的无毒液态金属,熔点为-19℃,在电子产品的直接液态冷却方面可能比水更有效。加林斯坦的热导率几乎是水的28倍。但是,由于加林斯坦的体积比热约为水的一半,并且其粘度是水的2.5倍,所以热量(而不是对流)是主要的。我们分析性地研究了使用结构化表面(SSs)来降低层流状态下基于Galinstan的微间隙冷却的整体热阻的效果。显着的是,加林斯坦的高表面张力,即水的7倍,意味着在驱动微间隙流动所需的压力差下,它可以在非润湿的卡西状态下保持稳定。 SS上方的流遇到有限的液-固接触面积和插在通道壁和加林斯坦之间的低粘度气体层。随之而来的摩擦因数的降低导致热阻的降低,但随之而来的努塞尔数的降低却增加了对流阻力。这些是由表观水动力和热滑移的文献中的表达式解释的。我们开发了一个无量纲的表达式来评估液-固-气系统的压力稳定性与流体动力滑移之间的权衡。我们还考虑了次级效应,包括入口效应和热物理性质的温度依赖性。结果表明,SS的添加增强了热传递。

著录项

  • 来源
    《Journal of Heat Transfer》 |2015年第9期|091003.1-091003.10|共10页
  • 作者单位

    Mechanical Engineering Department, Tufts University, Medford,MA 02155;

    Mechanical Engineering Department, Tufts University, Medford, MA 02155;

    Thermal Management Research Group, Efficient Energy Transfer (ηet) Department, Bell Labs Ireland, Alcatel-Lucent Ireland Ltd., Blanchardstown Business & Technology Park, Dublin 15, Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heat transfer; thermal resistance; apparent slip; microchannel cooling;

    机译:传播热量;热阻;明显的滑移微通道冷却;
  • 入库时间 2022-08-18 00:22:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号