...
首页> 外文期刊>Journal of Guidance, Control, and Dynamics >Modelling of Actuator Dynamics for Spacecraft Attitude Control
【24h】

Modelling of Actuator Dynamics for Spacecraft Attitude Control

机译:航天器姿态控制致动器动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

SPACECRAFT mission success is often highly dependent on thenperformance and robustness of the attitude control system,nwhich consists of different types of actuators, such as reaction controlnthrusters, reaction wheels, and magnetic actuators. Solutions tonspacecraft attitude control problems often rely on inherentnassumptions that the onboard actuators are able to deliver the exactntorque desired by the attitude controller at a specified time. Thenactuators are thus assumed to have no dynamics, or the actuatorndynamics are assumed to be fast enough to allow them to benneglected. Although this has shown to be a sufficient approach in thenpast, it is obvious that attitude actuators, as all electromechanicalndevices, have dynamics that might impact controller performance.nWith an increasing demand for high-precision attitude control fornpurposes such as formation control and optical intersatellite links, thennecessity of including actuator dynamics within the control solutionnis increasingly evident.nMathematical modelling of the complex and nonideal dynamicalnbehavior of actuators and its influence on spacecraft attitude controlnis a cumbersome task. This dynamical behavior has traditionallynbeen found through laboratory testing, and the subsequent controllerndesign has been influenced by these considerations. One example innthis direction is the requirement of reaction thruster response delaysnbeing less than the duration of the minimum activation pulse of thenactuator. There exist, however, theoretical results from the modellingnand analysis of actuator dynamics, such as in [1], in which the effectnof unmodelled fast actuator dynamics on the output feedbacknstabilization of feedback linearizable systems is studied. Similarly, inn[2,3], the robust stabilization of a class of nonlinear systems in thenpresence of unmodelled actuator and sensor dynamics isninvestigated. More applicable results for our purpose are found inn[4,5], in which general multiple-input/multiple-output (MIMO)nlinear actuator models for underwater vehicle thrusters withndynamics are presented. Because underwater vehicle thrusters arenessentially propellers connected to dc motors, analogous to, fornexample, reaction wheels for spacecraft attitude control, is it possiblento describe other actuators with the same model subject to minornchanges and tuning.nIn this paper, we substantiate a unified mathematical model ofnvarious attitude control actuators for space applications, in particular,nreaction thrusters, reaction wheels, and magnetic torquers. Thengeneral actuator dynamical model is based on the marine technologynwork of [5], appropriately fitted to the aforementioned actuatorncategories. To describe time delays in the response of actuators suchnas, for example, thrusters, an expansion of the general actuator modelnis suggested.
机译:SPACECRAFT任务的成功通常很大程度上取决于姿态控制系统的性能和鲁棒性,姿态控制系统由不同类型的执行器组成,例如反作用力推进器,反作用轮和电磁执行器。解决方案航天器姿态控制问题通常取决于固有的假设,即机载执行器能够在指定的时间传递姿态控制器所需的精确扭矩。因此,假定致动器没有动力学,或者假定致动器动力学足够快以至于被忽略。尽管这在过去已被证明是一种足够的方法,但显然,作为所有机电设备的姿态执行器具有可能影响控制器性能的动力学特性.n随着对高精度姿态控制的需求不断增长,诸如编队控制和卫星间光学链接等用途因此,将执行器动力学纳入控制解决方案的必要性日益明显。n执行器的复杂和非理想动力学行为的数学建模及其对航天器姿态控制的影响是一项繁重的任务。传统上,这种动态行为是通过实验室测试发现的,随后的控制器设计已受到这些考虑因素的影响。在该方向上的一个示例是反作用力推进器响应延迟的要求n小于致动器的最小致动脉冲的持续时间。但是,存在对执行器动力学进行建模和分析的理论结果,例如在[1]中,其中研究了未建模的快速执行器动力学对反馈线性化系统的输出反馈稳定的影响。类似地,在inn [2,3]中,研究了在存在未建模的执行器和传感器动力学的情况下一类非线性系统的鲁棒稳定性。在n [4,5]中找到了更多适用于我们目的的结果,其中提出了具有动力学特性的水下车辆推进器通用多输入/多输出(MIMO)线性执行器模型。由于水下车辆推进器本质上是连接到直流电动机的螺旋桨,例如类似于航天器姿态控制的反作用轮,是否有可能描述具有相同模型并经过细微改动和调整的其他执行器。n在本文中,我们证实了各种变量的统一数学模型适用于太空应用的姿态控制执行器,特别是无反应推进器,反作用轮和电磁扭矩调节器。然后,一般的致动器动力学模型是基于[5]的海洋技术工作,适当地适用于上述致动器类别。为了描述执行器这样的执行器(例如,推进器)的响应中的时间延迟,建议对通用执行器模型进行扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号