首页> 外文期刊>Journal of Guidance, Control, and Dynamics >Minimum-Fuel Cruise at Constant Altitude with Fixed Arrival Time
【24h】

Minimum-Fuel Cruise at Constant Altitude with Fixed Arrival Time

机译:固定到达时间恒定高度的最小燃油巡航

获取原文
获取原文并翻译 | 示例

摘要

AN IMPORTANT problem in air traffic management (ATM) isnthe design of aircraft trajectories that meet certain arrival timenconstraints at given waypoints, for instance, at the top of descentn(TOD), at the initial approach fix (IAF), or at the runway threshold.nThese are called 4-D trajectories, which are a key element in thentrajectory-based-operations (TBO) concept proposed by NextGennand SESAR for the future ATM system. The time constraints mustnalso be met in certain cases in which the nominal trajectories havento be modified to resolve detected conflicts (e.g., lost of separationnminima) between aircraft; for example, Bilimoria and Lee [1]nanalyze aircraft conflict resolution with an arrival time constraintnat a downstream waypoint.nOn the other hand, the design of fuel-optimal trajectories that leadnto energy-efficient flights is another important problem which hasnbeen treated extensively in the literature, see, for instance, Burrowsn[2], Neuman and Kreindler [3], Menon [4] and the references therein.nFuel-optimal trajectories with fixed arrival times are studied bynSorensen and Waters [5], Burrows [6] and Chakravarty [7], whonanalyze the 4-D fuel-optimization problem as a minimum directoperating-ncost (DOC) problem with free final time, that is, thenproblem is to find the time cost for which the corresponding freenfinal-time DOC-optimal trajectory arrives at the assigned time.nIn this work we analyze the problem of minimum-fuel cruise atnconstant altitude with a fixed arrival time as a singular optimal controlnproblem, building upon the works of Pargett and Ardema [8] andnRivas and Valenzuela [9], who analyze the problem of maximumrangencruise at constant altitude also as a singular optimal controlnproblem; the case of unsteady cruise is considered. The singular arcsnand the corresponding optimal control are obtained as a function ofnthe final time. The optimal paths are obtained as well, which define anvariable-Mach cruise at constant altitude. The influence of cruisenaltitude on the optimal paths is analyzed, and the minimum fuel isncalculated. The final-time constraint may be defined, for example, byna flight delay imposed on the nominal (preferred) cruise trajectoryn(which in our case is the minimum-fuel cruise trajectory with freenfinal time); comparison with a standard constant-Mach procedure tonabsorb delays is made. Results are presented for a model of a Boeingn767-300ER.nProblem FormulationnIt is desired to minimize fuel consumption for a given range andna given final time, that is, to minimize the following performancenindex:nJ u0001nZ tfn0ncTdt (1)nwith final time tfnfixed, subject to the following constraints:n_Vnu0001n1nmnu0002T u0003 Du0004 m_ u0001 u0003cT x_ u0001 V (2)nwhich are the equations of motion for cruise at constant altitude andnconstant heading. In these equations, the drag is a general knownnfunction Du0002V;mu0004, which takes into account the remaining equationnof motion L u0001 mg. The thrust Tu0002Vu0004 is given by T u0001 u0001TMu0002Vu0004, wherenu0001 models the throttle setting u0001m u0005 u0001 u0005 1, and TMu0002Vu0004 is a knownnfunction. The specific fuel consumption cu0002Vu0004 is also a knownnfunction. Thus, this problem has three states (speed V, mass m, andnflight distance x) and one control (u0001). The initial aircraft mass (mi)nand the initial and final flight distances (xi u0001 0 and xf) are given.nTo solve this problem it is convenient to take the distance x asnthe independent variable. Thus, the problem can be formulated asnfollows: minimize the performance index
机译:空中交通管理(ATM)中的一个重要问题是在给定航路点(例如,下降点(TOD)的顶部,初始进近点(IAF)或跑道入口)满足特定到达时间n约束的飞机轨迹的设计这些被称为4-D轨迹,是NextGennand SESAR为未来的ATM系统提出的基于轨迹的操作(TBO)概念的关键要素。在某些情况下也必须满足时间限制,在这些情况下,必须修改标称轨迹以解决飞机之间检测到的冲突(例如,最小间隔的丧失);例如,Bilimoria和Lee [1]分析了到达时间限制在下游航路点的飞机冲突解决方案。n另一方面,设计导致燃油效率高的航班的最佳燃油轨迹是另一个重要的问题,在飞机上已经得到了广泛的解决。文献,例如,参见Burrowsn [2],Neuman和Kreindler [3],Menon [4]及其参考文献。nSorensen和Waters [5],Burrows [6]和Chakravarty [7],他将4-D燃料优化问题分析为具有自由最终时间的最小直接操作成本(DOC)问题,也就是说,问题是找到相应的自由时限DOC最优轨迹的时间成本在这项工作中,我们以Pargett和Ardema [8]和nRivas和V的工作为基础,分析了固定到达时间作为固定最优控制问题的恒定高度的最小燃油巡航问题。 alenzuela [9],他还将恒定高度下的最大航程问题作为奇异的最优控制问题进行了分析;考虑不稳定巡航的情况。根据最终时间获得奇异弧和相应的最佳控制。还获得了最佳路径,这些路径定义了恒定高度下的可变马赫巡航。分析了巡航姿态对最优路径的影响,并计算了最小燃料量。最终时间约束可以定义为,例如,施加在标称(首选)巡航轨迹上的飞行延迟(在我们的情况下,这是具有自由时间的最小燃油巡航轨迹);与标准的恒定马赫数程序进行比较,以吸收延迟。结果是针对Boeingn767-300ER的模型给出的。n问题的制定n希望在给定的范围和给定的最终时间内将燃油消耗降至最低,即使以下性能降至最低:nJ u0001nZ tfn0ncTdt(1)n在最终时间tfn固定的情况下,主题受到以下约束:n_Vnu0001n1nmnu0002T u0003 Du0004 m_ u0001 u0003cT x_ u0001 V(2)n是在恒定高度和n恒定航向下航行的运动方程。在这些方程式中,阻力是一个通用的函数Du0002V; mu0004,它考虑了运动L u0001 mg的其余方程式。推力Tu0002Vu0004由T u0001 u0001TMu0002Vu0004给出,其中nu0001对节气门设置u0001m u0005 u0001 u0005 1建模,而TMu0002Vu0004是已知功能。单位油耗cu0002Vu0004也是已知功能。因此,该问题具有三种状态(速度V,质量m和n飞行距离x)和一个控制项(u0001)。给出了飞机的初始质量(mi)n和初始和最终飞行距离(xi u0001 0和xf)。为了解决这个问题,将距离x取为独立变量很方便。因此,问题可以表述如下:最小化性能指标

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号