首页> 外文期刊>Journal of Guidance, Control, and Dynamics >Spectral Decomposition of Orbital Tori
【24h】

Spectral Decomposition of Orbital Tori

机译:轨道花托的光谱分解

获取原文
获取原文并翻译 | 示例

摘要

The Kolmogorov–Arnold–Moser theorem states that lightly perturbed integrable Hamiltonian systems maintainntheir multiply periodic, toroidal motion in the phase space. The assertion that Earth-orbiting satellites under theninfluence of the geopotential mimic this behavior is the underlying premise of this work. This paper focuses onnapplying trajectory-following spectral methods on selected orbits to decompose them into multiperiodic Fouriernseries, effectively compressing ephemerides for long-term use. The proposed approach focuses on fitting localnspectral structures, denoted as frequency clusters, within the sampled orbital data to the analytical form of thenwindowed, truncated, continuous Fourier transform. This approach is significantlymore numerically efficient thannfitting every coefficient within the N-tuple Fourier series simultaneously. Numerical simulations using integratedndata yield root-mean-square error in orbital tori fits at 10 m or less per coordinate axis over a one-year period fornmost low-inclination, low-eccentricity orbits with altitudes lower than 1900 km.
机译:Kolmogorov–Arnold–Moser定理指出,轻微扰动的可积分哈密顿系统在相空间中维持其倍周期的环形运动。认为在地球电势影响下地球轨道卫星模仿这种行为的说法是这项工作的基本前提。本文重点研究在选定轨道上应用轨迹跟踪谱方法将其分解为多周期傅里叶级数,有效压缩星历表以供长期使用。所提出的方法着重于将采样的轨道数据内的局部频谱结构(表示为频率簇)拟合为随后的有窗,截断,连续傅立叶变换的解析形式。这种方法在数值上比同时在N元组傅立叶级数中同时拟合每个系数要有效得多。在一年的时间内,对于高度低于1900 km的大多数低倾角,低偏心率的轨道,使用Integratedndata进行的数值模拟在每个三坐标轴上以10 m或更小的距离给出了轨面的均方根误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号