首页> 外文期刊>Journal of Field Robotics >A novel loop closure detection method with the combination of points and lines based on information entropy
【24h】

A novel loop closure detection method with the combination of points and lines based on information entropy

机译:一种新颖的循环闭合检测方法,基于信息熵的点和线组合

获取原文
获取原文并翻译 | 示例

摘要

Visual simultaneous localization and mapping (visual-SLAM) is a prominent technology for autonomous navigation of mobile robots. As a significant requirement for visual-SLAM, loop closure detection (LCD) involves recognizing a revisited place, thereby helping visual-SLAM eliminate accumulated errors and obtain consistent maps. Conventional LCD approaches mainly rely on point features to detect the loop. In challenging environments, the performance of point-based LCD degrades, especially in low-texture and perceptual aliasing environments. This paper presents a novel point and line-based LCD. This approach allows for more robust LCD under an environment where point features are scarce and false-positive loops are easily detected. First, point and line features are extracted to construct visual vocabularies (a point-based vocabulary and a line-based vocabulary) by using the bag-of-visual-words model. Second, a novel weighting scheme is proposed by leveraging information entropy to combine the point-based similarity score and line-based similarity score to further improve the similarity evaluation accuracy of two images. Finally, a feature matching coherence check is added to determine the loop closure candidate searching area, which avoids false-positive loops caused by a decrease in the robot's velocity or because the system is still. We compare the proposed method with point-based LCD, line-based LCD, and PL-based (combining points and lines with the feature's number and dispersion) methods on public data sets in terms of precision and recall. The results reveal that the proposed method offers impressive results compared to other approaches.
机译:视觉同步定位和映射(Visual-Slam)是移动机器人自主导航的突出技术。作为对视觉上的重要要求,环路闭合检测(LCD)涉及识别重新检测的位置,从而帮助Visual-SLAM消除累积的错误并获得一致的地图。传统的LCD方法主要依赖于点特征来检测循环。在充满挑战的环境中,基于点的LCD的性能降低,尤其是在低纹理和感知锯齿环境中。本文介绍了一种新的点和基于线的液晶显示屏。这种方法允许在点特征是稀缺的环境下更强大的LCD,并且容易检测到假正循环。首先,提取点和线特征以通过使用Visual-Words模型构建视觉词汇表(基于点的词汇表和基于线的词汇表)。其次,通过利用信息熵提出了一种新的加权方案,以结合基于点的相似度和基于线的相似度分数,以进一步提高两个图像的相似性评估精度。最后,添加了一个特征匹配的一致性检查以确定循环闭合候选搜索区域,这避免了由机器人速度的减少引起的假正循环,或者因为系统仍然是。我们在精度和召回方面将所提出的基于LCD,基于线路的LCD和基于线的LCD和基于PL的(结合点和分散)方法的方法进行比较。结果表明,与其他方法相比,该方法提供了令人印象深刻的结果。

著录项

  • 来源
    《Journal of Field Robotics》 |2021年第3期|386-401|共16页
  • 作者单位

    School of Technology Beijing Forestry University Beijing China Key Lab of State Forestry and Grassland Administration on Forestry Equipment and Automation Beijing China;

    School of Technology Beijing Forestry University Beijing China Key Lab of State Forestry and Grassland Administration on Forestry Equipment and Automation Beijing China;

    School of Technology Beijing Forestry University Beijing China Key Lab of State Forestry and Grassland Administration on Forestry Equipment and Automation Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    a weighting scheme; BoVW; information entropy; LCD; visual-SLAM;

    机译:加权方案;bovw;信息熵;LCD;视觉垃圾;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号