首页> 外文期刊>Journal of Field Robotics >River segmentation for autonomous surface vehicle localization and river boundary mapping
【24h】

River segmentation for autonomous surface vehicle localization and river boundary mapping

机译:自主地面车辆定位和河流边界映射的河分割

获取原文
获取原文并翻译 | 示例

摘要

We present a vision-based algorithm that identifies the boundary separating water from land in a river environment containing specular reflections. Our approach relies on the law of reflection. Assuming the surface of water behaves like a horizontal mirror, the border separating land from water corresponds to the border separating three-dimensional (3D) data which are either above or below the surface of water. We detect a river by identifying this border in a stereo camera. We start by demonstrating how to robustly estimate the normal and height of the water's surface with respect to a stereo camera. Then, we segment water from land by identifying the boundary separating dense 3D stereo data which are either above or below the water's surface. We explicitly show how to find this boundary by formulating and solving a graph-based optimization problem using dense 3D stereo data near the shoreline and Dijkstra's algorithm. With the border of water identified, we validate the proposed river boundary detection algorithm by applying it to a chronologically sequential video sequence obtained from the visual-inertial canoe data set. The intended purpose of the proposed river segmentation algorithm is to be used as a front-end object recognition module for solving the simultaneous localization and mapping (SLAM) problem; therefore, using the extracted river boundary, we apply the recently developed visual-inertial Curve SLAM algorithm to localize a canoe and create a sparse map that recovers the outline, shape, and dimensions of the shoreline of a river.
机译:我们提出了一种基于视觉的算法,该算法识别覆盖含有镜面反射的河流环境中的陆地边界。我们的方法依赖反思定律。假设水的表面表现得像水平镜,从水中分离的边界对应于边界分离在水面上方或下方的三维(3D)数据。我们通过在立体声相机中识别此边框来检测河流。我们首先展示如何鲁布利地估计水面的正常和高度相对于立体声相机。然后,通过识别在水面上方或下方的边界分离致密的3D立体数据来分割来自土地的水。我们明确展示如何通过在海岸线和Dijkstra算法附近的密集3D立体声数据配方和解决基于图形的优化问题来找到该边界。通过识别的水边界,我们通过将所提出的河边界检测算法应用于从视觉惯性独木舟数据集获得的时间顺序视频序列来验证。所提出的River分段算法的预期目的是用作前端对象识别模块,用于解决同时定位和映射(SLAM)问题;因此,使用提取的河流边界,我们应用最近开发的视觉惯性曲线SLAM算法来定位独木舟并创建一个稀疏的地图,恢复河流线的轮廓,形状和尺寸。

著录项

  • 来源
    《Journal of Field Robotics》 |2021年第2期|192-211|共20页
  • 作者单位

    Sensors and Electron Devices Directorate Sensors Division United States Army Research Laboratory Adelphi Laboratory Center Adelphi Maryland USA;

    Department of Aerospace California Institute of Technology Pasadena California USA;

    Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta Georgia USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    computer vision; GPS-denied operation; mapping; marine robotics; SLAM;

    机译:计算机视觉;GPS拒绝操作;映射;海洋机器人;sl;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号