首页> 外文期刊>Journal of Robotic Systems >Automatic three-dimensional mapping for tree diameter measurements in inventory operations
【24h】

Automatic three-dimensional mapping for tree diameter measurements in inventory operations

机译:库存操作中的树径测量的自动三维映射

获取原文
获取原文并翻译 | 示例

摘要

Forestry is a major industry in many parts of the world, yet this potential domain of application area has been overlooked by the robotics community. For instance, forest inventory, a cornerstone of efficient and sustainable forestry, is still traditionally performed manually by qualified professionals. The lack of automation in this particular task, consisting chiefly of measuring tree attributes, limits its speed, and, therefore, the area that can be economically covered. To this effect, we propose to use recent advancements in three-dimensional mapping approaches in forests to automatically measure tree diameters from mobile robot observations. While previous studies showed the potential for such technology, they lacked a rigorous analysis of diameter estimation methods in challenging and large-scale forest environments. Here, we validated multiple diameter estimation methods, including two novel ones, in a new publicly-available dataset which includes four different forest sites, 11 trajectories, totaling 1458 tree observations, and 14,000 m~2. From our extensive validation, we concluded that our mapping method is usable in the context of automated forest inventory, with our best diameter estimation method yielding a root mean square error of 3.45 cm for our whole dataset and 2.04 cm in ideal conditions consisting of mature forest with well-spaced trees. Furthermore, we release this dataset to the public , to spur further research in robotic forest inventories. Finally, stemming from this large-scale experiment, we provide recommendations for future deployments of mobile robots in a forestry context.
机译:林业是世界许多地区的主要行业,但该潜在的应用领域域名已经被机器人社区忽视了。例如,森林库存,高效和可持续的林业的基石仍然传统上由合格的专业人士手动进行。在这项特定任务中缺乏自动化,主要由测量树属性,限制其速度,因此可以在经济上覆盖的区域。为此,我们建议在森林中使用最近的三维映射方法,以自动测量来自移动机器人观测的树径。虽然以前的研究表明了这种技术的潜力,但它们缺乏对挑战性和大规模森林环境的直径估计方法严格分析。在这里,我们在新的公共可公共数据集中验证了多个直径估计方法,包括两种新颖的数据集,其中包括四个不同的森林网站,11个轨迹,总计1458年的树木观察和14,000 m〜2。从我们的广泛验证来看,我们得出的结论是,我们的映射方法可在自动森林库存的背景下使用,我们的最佳直径估计方法为我们的整个数据集产生3.45厘米的根均线误差,在成熟的森林中的理想条件下为2.04厘米树木良好。此外,我们将此数据集发布给公众,以促进机器人森林库存的进一步研究。最后,源于这种大型实验,我们为未来移动机器人部署的建议提供了建议,以便在林业背景中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号