首页> 外文期刊>Journal of environment informatics >Evaluation of Bayesian Estimation of a Hidden Continuous-Time Markov Chain Model, with Application to Threshold Violation in Water-Quality Indicators
【24h】

Evaluation of Bayesian Estimation of a Hidden Continuous-Time Markov Chain Model, with Application to Threshold Violation in Water-Quality Indicators

机译:隐藏的连续时间马尔可夫链模型的贝叶斯估计的评估及其在水质指标阈值违规中的应用

获取原文
获取原文并翻译 | 示例

摘要

Natural resource managers require information concerning the frequency, duration, and long-term probability of occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the sub-sampled time series with respect to the full quasi-weekly time series.
机译:自然资源管理者需要有关违反已定义阈值的水质指标(WQI)的频率,持续时间和长期发生概率的信息。这些阈值穿越的时间通常对观察者是隐藏的,观察者仅限于相对少见的观察。在这里,将用于隐藏过程的模型与用于观察的模型链接在一起,并使用贝叶斯方法估计描述持续时间,返回周期和长期发生概率的参数。进行了一个模拟实验,以根据相当于5-30年的总监视期和每年1-50次观察的观察频率的情况在方案下评估该方法。给定恒定的阈值穿越率,参数估计的准确性和精度会随着更长的总监视时间和更频繁的观察而增加。在给定固定的监视周期和观察频率的情况下,参数估计的准确性和精度会随着跨阈值时间的延长而增加。对于长期违规概率大于0.10的大多数情况,已确定至少需要600次观察才能获得精确的估计。该方法的一个应用是使用来自弗吉尼亚州谢南多厄国家公园(Shendandah National Park)溪流“深流”(Deep Run)的约22年的准每周酸中和能力观测结果提出的。还对该时间序列进行了子采样,以模拟每月和每半个月的采样协议。尽管采样频率很高,但长期违规概率的估计仍是公正的。但是,相对于整个准每周时间序列,使用二次抽样的时间序列高估了预期的持续时间和返回期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号