...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Soot Modeling for Advanced Control of Diesel Engine Aftertreatment
【24h】

Soot Modeling for Advanced Control of Diesel Engine Aftertreatment

机译:柴油机后处理高级控制的烟尘模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Diesel paniculate filters (DPFs) are well assessed aftertreatment devices, equipping almost every modern diesel engine on the market to comply with today's stringent emission standards. However, an accurate'estimation of soot loading, which is instrumental to ensuring optimal performance of the whole engine-after-treatment assembly, is still a major challenge. In fact, several highly coupled physical-chemical phenomena occur at the same time, and a vast number of engine and exhaust dependent parameters make this task even more daunting. This challenge may be solved with models characterized by different degrees of detail (0-D to 3-D) depending on the specific application. However, the use of real-time, but accurate enough models, may be the primary hurdle that has to be overcome when confronted with advanced exhaust emissions control challenges, such as the integration of the DPF with the engine or other critical aftertreatment components (selective catalytic reduction or other NO_X control components), or to properly develop model-based OBD sensors. This paper aims at addressing real time DPF modeling issues with special regard to key parameter settings, by using the 1-D code called ExhAUST (exhaust aftertreatment unified simulation tool), which was jointly developed by the University of Rome Tor Vergata and West Virginia University. ExhAUST is characterized by a novel and unique full analytical treatment of the wall that allows a highly detailed representation of the soot loading evolution inside the DPF porous matrix. Numerical results are compared with experimental data gathered at West Virginia University engine laboratory using a MY2004 Mack®MP7-355E, an 11 liter, 6-cylinder, inline heavy-duty diesel engine coupled to a Johnson Matthey CCRT diesel oxidation catalyst + CDPF, catalyzed DPF exhaust aftertreatment system. To that aim, the engine test bench was equipped with a DPF weighing system to track soot loading over a specifically developed engine operating procedure. Results indicate that the model is accurate enough to capture soot loading and back pressure histories with regard to different steady state engine operating points, without a need for any tuning procedure of the key parameters. Thus, the use of ExhAUST for application to advanced after-treatment control appears to be a promising tool at this stage.
机译:柴油微粒滤清器(DPF)是经过充分评估的后处理装置,市场上几乎所有现代柴油发动机都配备了这种柴油滤清器,以符合当今严格的排放标准。然而,对确保整个发动机后处理组件的最佳性能至关重要的烟尘载荷的准确估计仍然是一个重大挑战。实际上,同时发生了几种高度耦合的物理化学现象,并且发动机和排气相关的大量参数使这项任务更加艰巨。根据特定的应用,可以使用具有不同细节程度(0-D到3-D)的模型来解决此难题。但是,使用实时但足够准确的模型可能是面对先进的废气排放控制挑战(例如将DPF与发动机或其他关键后处理组件集成在一起时必须克服的主要障碍)(选择性催化还原或其他NO_X控制组件),或正确开发基于模型的OBD传感器。本文旨在通过使用由罗马Tor Vergata大学和西维吉尼亚大学联合开发的称为ExhAUST(排气后处理统一仿真工具)的一维代码来解决特别涉及关键参数设置的实时DPF建模问题。 。 ExhAUST的特点是对壁进行了新颖独特的全面分析处理,可以高度详细地表示DPF多孔基质内部的烟灰负荷演变。将数值结果与在西弗吉尼亚大学发动机实验室使用11升6缸直列式重型柴油发动机MY2004Mack®MP7-355E结合Johnson Matthey CCRT柴油氧化催化剂+ CDPF催化得到的实验数据进行比较DPF排气后处理系统。为此,发动机测试台配备了DPF称重系统,以在专门开发的发动机操作程序上跟踪烟尘负载。结果表明,该模型足够精确,可以捕获关于不同稳态发动机工作点的烟尘负荷和背压历史,而无需任何关键参数的调整过程。因此,在此阶段,将ExhAUST应用于先进的后处理控制似乎是一种有前途的工具。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2011年第12期|p.122804.1-122804.12|共12页
  • 作者单位

    Department of Mechanical Engineering, University of Rome Tor Vergata, via del Politecnicol, 00133 Rome, Italy Fulbright Research Scholar, Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

    Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号