...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Thermoacoustic Shape Optimization of a Subsonic Nozzle
【24h】

Thermoacoustic Shape Optimization of a Subsonic Nozzle

机译:亚音速喷嘴的热声形状优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Indirect combustion noise originates from the acceleration of nonuniform temperature or high vorticity regions when convected through a nozzle or a turbine. In a recent contribution (Giauque et al., 2012, "Analytical Analysis of Indirect Combustion Noise in Subcriti-cal Nozzles," ASMEJ. Eng. Gas Turbies Power, 134(11), p. 111202) the authors have presented an analytical thermoacoustic model providing the indirect combustion noise generated by a subcritical nozzle when forced with entropy waves. This model explicitly takes into account the effect of the local changes in the cross-section area along the configuration of interest. In this article, the authors introduce this model into an optimization procedure in order to minimize or maximize the thermoacoustic noise emitted by arbitrarily shaped nozzles operating under subsonic conditions. Each component of the complete algorithm is described in detail. The evolution of the cross-section changes are introduced using Bezier's splines, which provide the necessary freedom to actually achieve arbitrary shapes. Bezier's polar coordinates constitute the parameters defining the geometry of a given individual nozzle. Starting from a population of nozzles of random shapes, it is shown that a specifically designed genetic optimization algorithm coupled with the analytical model converges at will toward a quieter or noisier population. As already described by Bloy (Bloy, 1979, "The Pressure Waves Produced by the Convection of Temperature Disturbances in High Subsonic Nozzle Flows," J. Fluid Mech., 94(3), pp. 465-475), the results therefore confirm the significant dependence of the indirect combustion noise with respect to the shape of the nozzle, even when the operating regime is kept constant. It appears that the quietest nozzle profile evolves almost linearly along its converging and diverging sections, leading to a square evolution of the cross-section area. Providing insight into the underlying physical reason leading to the difference in the noise emission between two extreme individuals, the integral value of the source term of the equation describing the behavior of the acoustic pressure of the nozzle is considered. It is shown that its evolution with the frequency can be related to the global acoustic emission. Strong evidence suggest that the noise emission increases as the source term in the converging and diverging parts less compensate each other. The main result of this article is the definition and proposition of an acoustic emission factor, which can be used as a surrogate to the complex determination of the exact acoustic levels in the nozzle for the thermoacoustic shape optimization of nozzle flows. This acoustic emission factor, which is much faster to compute, only involves the knowledge of the evolution of the cross-section area and the inlet thermodynamic and velocity characteristics to be computed.
机译:间接燃烧噪声源自通过喷嘴或涡轮对流时温度不均匀或高涡度区域的加速。在最近的一篇文章中(Giauque等人,2012,“亚临界喷嘴间接燃烧噪声的分析”,ASMEJ。Eng。Gas Turbies Power,134(11),第111202页),作者提出了一种热声分析。该模型提供了亚临界喷嘴在受到熵波作用时产生的间接燃烧噪声。该模型明确考虑到沿横截面区域沿感兴趣的配置的局部变化的影响。在本文中,作者将此模型引入优化过程中,以最小化或最大化在亚音速条件下运行的任意形状喷嘴发出的热声噪声。详细描述了完整算法的每个组成部分。使用Bezier样条曲线介绍了横截面变化的演变过程,这些样条曲线提供了必要的自由度,可以实际实现任意形状。贝塞尔曲线的极坐标构成定义给定单个喷嘴的几何形状的参数。从数量众多的随机形状的喷嘴开始,可以看出,经过特殊设计的遗传优化算法与分析模型相结合,可以向更安静或更嘈杂的群体随意收敛。正如Bloy(Bloy,1979年,“高亚音速喷嘴流中温度扰动的对流产生的压力波”,《流体力学》,第94卷第3期,第465-475页)所述,该结果得到了证实。即使在保持工作状态不变的情况下,间接燃烧噪声对喷嘴形状的依赖性也很大。看来,最安静的喷嘴轮廓沿其会聚和发散部分几乎呈线性发展,从而导致横截面积呈正方形发展。为了深入了解导致两个极端个体之间噪声发射不同的根本物理原因,考虑了描述喷嘴声压行为的方程式源项的积分值。结果表明,其随频率的变化可能与整体声发射有关。有力的证据表明,随着会聚和发散部分中源项的减少,噪声的排放会增加。本文的主要结果是声发射因子的定义和提出,它可以替代复杂的确定喷嘴中精确声级的方法,以优化喷嘴流的热声形状。该声发射因子的计算速度要快得多,它仅涉及横截面积的演变以及要计算的入口热力学和速度特性的知识。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2013年第10期|102601.1-102601.9|共9页
  • 作者单位

    Department of Computational Fluid Dynamics and Aeroacoustics, Onera-The French Aerospace Lab, Chatillon 92322, France;

    Department of Computational Fluid Dynamics and Aeroacoustics, Onera-The French Aerospace Lab, Chatillon 92322, France;

    Department of Computational Fluid Dynamics and Aeroacoustics, Onera-The French Aerospace Lab, Chatillon 92322, France;

    CNRS, UPR 288, Laboratoire EM2C, Ecole Centrale Paris, Grande Voie des Vignes, Chatenay-Malabry 92230, France;

    CNRS, UPR 288, Laboratoire EM2C, Ecole Centrale Paris, Grande Voie des Vignes, Chatenay-Malabry 92230, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号