首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >First and Second Law Analysis of Intercooled Turbofan Engine
【24h】

First and Second Law Analysis of Intercooled Turbofan Engine

机译:中冷涡轮风扇发动机的第一定律和第二定律分析

获取原文
获取原文并翻译 | 示例
           

摘要

Although the benefits of intercooling for aero-engine applications have been realized and discussed in many publications, quantitative details are still relatively limited. In order to strengthen the understanding of aero-engine intercooling, detailed performance data on optimized intercooled (IC) turbofan engines are provided. Analysis is conducted using an exergy breakdown, i.e., quantifying the losses into a common currency by applying a combined use of the first and second law of thermodynamics. Optimal IC geared turbofan engines for a long range mission are established with computational fluid dynamics (CFD) based two-pass cross flow tubular intercooler correlations. By means of a separate variable nozzle, the amount of intercooler coolant air can be optimized to different flight conditions. Exergy analysis is used to assess how irreversibility is varying over the flight mission, allowing for a more clear explanation and interpretation of the benefits. The optimal IC geared turbofan engine provides a 4.5% fuel burn benefit over a non-IC geared reference engine. The optimum is constrained by the last stage compressor blade height. To further explore the potential of intercooling the constraint limiting the axial compressor last stage blade height is relaxed by introducing an axial radial high pressure compressor (HPC). The axial-radial high pressure ratio (PR) configuration allows for an ultrahigh overall PR (OPR). With an optimal top-of-climb (TOC) OPR of 140, the configuration provides a 5.3% fuel burn benefit over the geared reference engine. The irreversibilities of the intercooler are broken down into its components to analyze the difference between the ultrahigh OPR axial-radial configuration and the purely axial configuration. An intercooler conceptual design method is used to predict pressure loss heat transfer and weight for the different OPRs. Exergy analysis combined with results from the intercooler and engine conceptual design are used to support the conclusion that the optimal PR split exponent stays relatively independent of the overall engine PR.
机译:尽管在许多出版物中已经实现并讨论了中间冷却在航空发动机应用中的优势,但定量细节仍然相对有限。为了加强对航空发动机中冷的理解,提供了有关优化的中冷(IC)涡扇发动机的详细性能数据。使用本能分解进行分析,即通过组合使用热力学第一定律和第二定律将损失量化为一种通用货币。利用基于计算流体动力学(CFD)的两程错流管式中冷器相关性,可以确定用于长时间任务的最佳IC齿轮涡轮风扇发动机。通过一个单独的可变喷嘴,可以将中冷器冷却剂的空气量优化到不同的飞行条件。火用分析用于评估飞行任务中不可逆性的变化,从而对收益进行更清晰的解释和解释。与非IC齿轮参考发动机相比,最佳的IC齿轮涡轮风扇发动机可节省4.5%的燃油。最佳状态受最后一级压缩机叶片高度的限制。为了进一步探索中冷的潜力,通过引入轴向径向高压压缩机(HPC)来放松限制轴向压缩机最后一级叶片高度的约束。轴向-径向高压比(PR)配置可实现超高的整体PR(OPR)。该配置的最佳爬升顶部(TOC)OPR为140,与齿轮式参考发动机相比,可节省5.3%的燃油。中间冷却器的不可逆性被分解为其组件,以分析超高OPR轴向径向构型与纯轴向构型之间的差异。中冷器的概念设计方法用于预测不同OPR的压力损失传热和重量。火用分析与中冷器和发动机概念设计的结果相结合,可支持最佳PR分流指数相对独立于整体发动机PR的结论。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2016年第2期|021202.1-021202.8|共8页
  • 作者单位

    Fluid Dynamics Division, Applied Mechanics Department, Chalmers University of Technology, Goeteborg 41296, Sweden;

    Fluid Dynamics Division, Applied Mechanics Department, Chalmers University of Technology, Goeteborg 41296, Sweden;

    Fluid Dynamics Division, Applied Mechanics Department, Chalmers University of Technology, Goeteborg 41296, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号