首页> 外文期刊>Journal of Energy Resources Technology >Estimation of the Rate of Penetration While Horizontally Drilling Carbonate Formation Using Random Forest
【24h】

Estimation of the Rate of Penetration While Horizontally Drilling Carbonate Formation Using Random Forest

机译:用随机森林水平钻井碳酸盐形成时渗透速度估计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Predicting the rate of penetration (ROP) is challenging especially during horizontal drilling. This is because there are many factors affecting ROP. Machine learning techniques are very promising in identifying the structural relationships existing between the inputs and target variables; these techniques were recently successfully applied to estimate the ROP in different wellbore shapes and through various formation lithologies. This study is aimed to introduce a random forest (RF) regression model for ROP prediction based on many factors such as the drilling mechanical parameters (torque, pipe speed, and weight on bit), hole cleaning parameters (the drilling fluid flowrate and pump pressure), and formation properties (formation bulk density and formation resistivity). In addition to its superiority in providing accurate results, RF has the advantage of providing interpretable rules. These rules help in understanding the relationships between the regressors and the target variable. Actual field measurements collected during horizontally drilling carbonate formation were used for training and testing the RF model. Unseen data collected from another well were used for validating the optimized model. Using the K-fold validation method, the proposed RF model has proven its superior performance when compared to artificial neural networks and support vector regression models. An illustrative example on a sample of real drilling data is presented to explain how the RF regression model is applied to the drilling data. In addition, developing interpretable regression rules through merging RF results is explained. These rules can guide drilling practitioners in accomplishing drilling projects at minimum time and cost.
机译:预测渗透率(ROP)是挑战,特别是在横向钻井期间。这是因为有许多影响ROP的因素。机器学习技术在识别输入和目标变量之间存在的结构关系非常有希望;最近成功地应用了这些技术来估计不同井筒形状的循环和通过各种形成岩性。本研究旨在引入ROP预测的随机森林(RF)回归模型,基于许多因素,例如钻探机械参数(扭矩,管速和位上的重量),孔清洁参数(钻井液流量和泵压力) )和形成性质(形成堆积密度和形成电阻率)。除了提供准确的结果方面,RF还具有提供可解释规则的优点。这些规则有助于了解回归与目标变量之间的关系。在水平钻井碳酸盐形成期间收集的实际场测量用于训练和测试RF模型。从另一个井收集的看不见的数据用于验证优化的模型。使用K折叠验证方法,与人工神经网络相比,所提出的RF模型已经证明了其优越性的性能和支持向量回归模型。呈现了真实钻井数据样本的说明性示例以说明RF回归模型如何应用于钻井数据。此外,还通过合并RF结果来制定可解释的回归规则。这些规则可以在最短的时间和成本下指导钻井从业人员完成钻井项目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号