首页> 外文期刊>Journal of Electronic Packaging >Micron and Submicron-Scale Characterization of Interfaces in Thermal Interface Material Systems
【24h】

Micron and Submicron-Scale Characterization of Interfaces in Thermal Interface Material Systems

机译:热界面材料系统中界面的微米和亚微米尺度表征

获取原文
获取原文并翻译 | 示例
           

摘要

One of the key challenges in the thermal management of electronic packages are interfaces, such as those between the chip and heat spreader and the interface between a heat spreader and heat sink or cold plate. Typically, thermal interfaces are filled with materials such as thermal adhesives and greases. Interface materials reduce the contact resistance between the mating heat generating and heat sinking units by filling voids and grooves created by the nonsmooth surface topography of the mating surfaces, thus improving surface contact and the conduction of heat across the interface. However, micron and submicron voids and delaminations still exist at the interface between the interface material and the surfaces of the heat spreader and semiconductor device. In addition, a thermal interface material (TIM) may form a filler-depleted and resin-rich region at the interfaces. These defects, though at a small length scale, can significantly deteriorate the heat dissipation ability of a system consisting of a TIM between a heat generating surface and a heat dissipating surface. The characterization of a freestanding sample of TIM does not provide a complete understanding of its heat transfer, mechanical, and interfacial behavior. However, system-level characterization of a TIM system, which includes its freestanding behavior and its interfacial behavior, provides a more accurate understanding. While, measurement of system-level thermal resistance provides an accurate representation of the system performance of a TIM, it does not provide information regarding the physical behavior of the TIM at the interfaces. This knowledge is valuable in engineering interface materials and in developing assembly process parameters for enhanced system-level thermal performance. Characterization of an interface material between a silicon device and a metal heat spreader can be accomplished via several techniques. In this research, high-magnification radiography with computed tomography, acoustic microscopy, and scanning electron microscopy were used to characterize various TIM systems. The results of these characterization studies are presented in this paper. System-level thermal performance results are compared to physical characterization results.
机译:电子封装的热管理中的关键挑战之一是接口,例如芯片和散热器之间的接口以及散热器和散热器或冷板之间的接口。典型地,热界面填充有诸如热粘合剂和油脂的材料。界面材料通过填充由配合表面的不光滑表面形貌所产生的空隙和凹槽,来降低配合的生热单元和散热单元之间的接触电阻,从而改善表面接触和界面上的热量传导。然而,在界面材料与散热器和半导体器件的表面之间的界面处仍然存在微米和亚微米的空隙和分层。另外,热界面材料(TIM)可以在界面处形成贫乏且富含树脂的区域。这些缺陷虽然长度尺度较小,但会显着降低由发热表面和散热表面之间的TIM组成的系统的散热能力。 TIM的独立样品的特征不能完全了解其传热,机械和界面行为。但是,TIM系统的系统级表征(包括其独立行为和界面行为)提供了更准确的理解。尽管系统级热阻的测量可以准确地表示TIM的系统性能,但不能提供有关TIM在接口处的物理行为的信息。这些知识在工程接口材料和开发装配工艺参数以增强系统级热性能方面很有价值。硅器件和金属散热器之间的界面材料的表征可以通过几种技术来完成。在这项研究中,计算机断层扫描,声学显微镜和扫描电子显微镜的高倍率射线照相被用来表征各种TIM系统。这些表征研究的结果在本文中给出。将系统级热性能结果与物理表征结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号