首页> 外文期刊>Journal of Electronic Packaging >Modeling Simplification for Thermal Mechanical Analysis of High Density Chip-to-Substrate Connections
【24h】

Modeling Simplification for Thermal Mechanical Analysis of High Density Chip-to-Substrate Connections

机译:高密度芯片到基板连接的热力学分析的建模简化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Finite element modeling (FEM) is an important component in the design of reliable chipto-substrate connections. However, FEM can quickly become complex as the number of input/output connections increases. Three-dimensional (3D) chip-substrate models are usually simplified where only portions of the chip-substrate structure is considered in order to conserve computer resources and time. Chip symmetry is often used to simplify the models from full-chip structures to quarter or octant models. Recently, an even simpler 3D model, general plane deformation (GPD) slice model, has been used to characterize the properties of the full-chip and local regions on the structures, such as in the structures for solder ball fatigue. In this study, the accuracy of the GPD model is examined by comparing the mechanical behavior of a flip-chip, copper pillar package from various full and partial chip models to that of the GDP model. In addition, it is shown that the GPD model can be further simplified to a half-GPD model by using the symmetry plane in the middle of the slice and choosing the proper boundary conditions. The number of nodes required for each model and the accuracy of the different FEM models are compared. Analysis of the maximum stress in the silicon chip shows that the full-chip model, quarter model, and octant model all convergence to the same result. However, the GPD and half-GPD models, with the previously used boundary conditions, converge to a different stress values from that of the full-chip models. The error in the GPD models for small, 36 I/O package was 4.7% compared to the more complete, full-chip FEM models. The displacement error in the GPD models was more than 50%, compared to the full-chip models, and increased with larger structures. The high displacement error of the GPD models was due to the ordinarily used boundary conditions which neglect the effect from adjacent I/O on the sidewall of the GPD slice. An optimization equation is proposed to account for the spatial variation in the stress on the GPD sidewall. The GPD displacement error was reduced from 50% to 3.3% for the 36 pillar array.
机译:有限元建模(FEM)是可靠的芯片到基板连接设计中的重要组成部分。但是,随着输入/输出连接数量的增加,FEM可能很快变得复杂。通常简化三维(3D)芯片基板模型,其中仅考虑部分芯片基板结构,以节省计算机资源和时间。芯片对称通常用于简化模型,从全芯片结构到四分之一或八分之一模型。近来,甚至更简单的3D模型(通用平面变形(GPD)切片模型)已被用来表征结构上的全芯片和局部区域的特性,例如用于锡球疲劳的结构。在这项研究中,通过比较倒装芯片,铜柱封装的机械性能(来自各种完全和部分芯片模型)与GDP模型的机械性能,检验了GPD模型的准确性。另外,通过使用切片中间的对称平面并选择适当的边界条件,可以将GPD模型进一步简化为半GPD模型。比较每个模型所需的节点数和不同FEM模型的准确性。对硅芯片中最大应力的分析表明,全芯片模型,四分之一模型和八分圆模型都收敛到相同的结果。但是,具有先前使用的边界条件的GPD和Half-GPD模型收敛到与全芯片模型不同的应力值。与更完整的全芯片FEM模型相比,小型36 I / O封装的GPD模型中的错误为4.7%。与全芯片模型相比,GPD模型中的位移误差大于50%,并且随着更大的结构而增加。 GPD模型的高位移误差是由于通常使用的边界条件而忽略了GPD切片侧壁上相邻I / O的影响。提出了一个优化方程来解决GPD侧壁应力的空间变化。 36个柱阵列的GPD位移误差从50%降低到3.3%。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2011年第4期|p.041004.1-041004.7|共7页
  • 作者

    Ping Nicole An; Paul A. Kohl;

  • 作者单位

    Peking University, Institute of Microelectronics, No. 5, Yiheyuan Road Haidian District, Beijing 100871, P. R. China;

    Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, GA 30332-0100;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号