首页> 外文期刊>Journal of Electronic Packaging >Atomic Study on Copper-Copper Bonding Using Nanoparticles
【24h】

Atomic Study on Copper-Copper Bonding Using Nanoparticles

机译:纳米铜铜键的原子研究

获取原文
获取原文并翻译 | 示例
           

摘要

Thermocompression bonding of copper to copper using copper nanoparticles is studied using molecular dynamics. The bonding interface formation process is investigated frst. For the bonding process, the effects of temperature and external pressure are examined. Also, we examine the grain growth at the interface. The results show that the nanoparticles with high surface energy and low compressive strength provide the active atoms to bond with copper. Pressure determining the degree of deformation of nanoparticles transfers atoms from the interior to the surface of nanoparticles and provide more surface atom to form bonds with bulk copper. While continuous pressure increase does not help bonding, higher temperature will facilitate formation of vacancies by breaking the bonds and driving the metal atoms into these vacancies. In addition, a higher temperature promotes grain growth at the interface. These behaviors indicate that using nanoparticles as a bonding layer in metal bonding can effectively reduce bonding temperature and pressure. It is necessary to select appropriate pressure at initial bonding stage and provide continuous high-temperature hold time.
机译:使用分子动力学研究了使用铜纳米颗粒将铜热压结合到铜上。首先研究键合界面的形成过程。对于粘合过程,要检查温度和外部压力的影响。另外,我们检查了界面处的晶粒长大。结果表明,具有高表面能和低抗压强度的纳米颗粒提供了与铜结合的活性原子。决定纳米颗粒变形程度的压力将原子从内部转移到纳米颗粒的表面,并提供更多的表面原子与本体铜形成键。尽管连续的压力增加无助于键合,但较高的温度将通过破坏键合并驱动金属原子进入这些空位而促进空位的形成。另外,较高的温度促进了界面处的晶粒生长。这些行为表明,在金属粘结中使用纳米颗粒作为粘结层可以有效降低粘结温度和压力。在初始粘合阶段必须选择适当的压力,并提供连续的高温保持时间。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2020年第2期|021005.1-021005.5|共5页
  • 作者单位

    School of Mechanical Engineering Zhengzhou University Zhengzhou Henan 450001 China Institute of Applied Physics Henan Academy of Sciences Zhengzhou Henan 450001 China;

    School of Mechanical Engineering Zhengzhou University Zhengzhou Henan 450001 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号