首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Robust Adaptive Attitude Tracking Control With L2-Gain Performance and Vibration Reduction of an Orbiting Flexible Spacecraft
【24h】

Robust Adaptive Attitude Tracking Control With L2-Gain Performance and Vibration Reduction of an Orbiting Flexible Spacecraft

机译:具有L2增益性能和减震特性的鲁棒自适应姿态跟踪控制

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a dual-stage control system design method for flexible spacecraft attitude tracking control and active vibration suppression by an embedded smart material as sensors/actuators. More specifically, a conventional sliding mode controller with the assumption of knowing system parameters is first designed that ensures asymptotical convergence of attitude tracking error described by error quaternion and its derivative in the presence of bounded parameter variation/disturbance. Then it is redesigned, such that the need for knowing the system parameters in advance is eliminated by using an adaptive updating law. For the synthesis of the controller, to achieve the prescribed L2-gain performance criterion, the control gains are designed by solving a linear matrix inequality problem. Indeed, external torque disturbances/parametric error attenuations with respect to the performance measurement along with the control input penalty are ensured in the L2-gain sense. Even if this controller has the ability to reject the disturbance and deal with actuator constraint, it excites the elastic modes of flexible appendages, which will deteriorate the pointing performance. Then the undesirable vibration is actively suppressed by applying feedback control voltages to the piezoceramic actuator, in which the modal velocity feedback control method is employed for determining the control voltages. Numerical simulations are performed to show that attitude tracking and vibration suppression are accomplished, in spite of the presence of disturbances/parameter uncertainties and even control input constraint.
机译:本文提出了一种采用嵌入式智能材料作为传感器/执行器的挠性航天器姿态跟踪控制和主动振动抑制的双阶段控制系统设计方法。更具体地,首先设计具有已知系统参数的假设的常规滑模控制器,该常规滑模控制器确保在有界参数变化/扰动的情况下由误差四元数及其导数描述的姿态跟踪误差的渐近收敛。然后对其进行重新设计,以便通过使用自适应更新定律消除对预先知道系统参数的需要。对于控制器的综合,为了达到规定的L2增益性能标准,通过解决线性矩阵不等式问题来设计控制增益。实际上,在L2增益的意义上,确保了有关性能测量的外部扭矩干扰/参数误差衰减以及控制输入损失。即使该控制器具有消除干扰并处理执行器约束的能力,它也会激发柔性附件的弹性模式,这会降低指向性能。然后,通过将反馈控制电压施加到压电陶瓷致动器来主动抑制不希望的振动,其中采用模态速度反馈控制方法来确定控制电压。数值模拟表明,尽管存在干扰/参数不确定性甚至控制输入约束,但仍可以完成姿态跟踪和振动抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号