首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Estimation of State Transition Probabilities in Asynchronous Vector Markov Processes
【24h】

Estimation of State Transition Probabilities in Asynchronous Vector Markov Processes

机译:异步矢量马尔可夫过程中状态转移概率的估计

获取原文
获取原文并翻译 | 示例

摘要

Vector Markov processes (also known as population Markov processes) are an important class of stochastic processes that have been used to model a wide range of technological, biological, and socioeconomic systems. The dynamics of vector Markov processes are fully characterized, in a stochastic sense, by the state transition probability matrix P. In most applications, P has to be estimated based on either incomplete or aggregated process observations. Here, in contrast to established methods for estimation given aggregate data, we develop Bayesian formulations for estimating P from asynchronous aggregate (longitudinal) observations of the population dynamics. Such observations are common, for example, in the study of aggregate biological cell population dynamics via flow cytometry. We derive the Bayesian formulation, and show that computing estimates via exact marginalization are, generally, computationally expensive. Consequently, we rely on Monte Carlo Markov chain sampling approaches to estimate the posterior distributions efficiently. By explicitly integrating problem constraints in these sampling schemes, significant efficiencies are attained. We illustrate the algorithm via simulation examples and show that the Bayesian estimation schemes can attain significant advantages over point estimates schemes such as maximum likelihood.
机译:向量马尔可夫过程(也称为人口马尔可夫过程)是一类重要的随机过程,已被用来对广泛的技术,生物和社会经济系统进行建模。向量马尔可夫过程的动力学在随机意义上完全由状态转移概率矩阵P表征。在大多数应用中,必须基于不完整或聚集的过程观测值来估计P。在此,与用于估算给定聚合数据的既定方法相反,我们开发了贝叶斯公式,用于根据种群动态的异步聚合(纵向)观察值估算P。这样的观察是常见的,例如,在通过流式细胞术研究聚集的生物细胞群体动力学中。我们得出贝叶斯公式,并表明通过精确边际化计算估计值通常在计算上是昂贵的。因此,我们依靠蒙特卡洛马尔可夫链采样方法来有效地估计后验分布。通过将问题约束条件明确整合到这些采样方案中,可以实现显着的效率。我们通过仿真示例说明了该算法,并表明贝叶斯估计方案相对于点估计方案(例如最大似然率)具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号