首页> 外文期刊>Journal of Discrete Algorithms >An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality
【24h】

An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality

机译:三角不等式不对称的非对称TSP的一种改进的近似算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the asymmetric traveling salesperson problem with γ-parameterized triangle inequality for γ ∈ [1/2, 1). That means, the edge weights fulfill w(u, v) ≤ γ · (w(u, x) + w(x, v)) for all nodes u, v, x. Chandran and Ram [L.S. Chandran, L.S. Ram, Approximations for ATSP with parametrized triangle inequality, in: Proc. 19th Int. Symp. on Theoret. Aspects of Comput. Sci. (STACS), in: Lecture Notes in Comput. Sci., vol. 2285, Springer, Berlin, 2002, pp. 227-237] gave the first constant factor approximation algorithm with polynomial running time for this problem. They achieve performance ratio γ/(1 - γ). We devise an approximation algorithm with performance ratio (1 + γ)/(2 - γ - γ~3), which is better for γ ∈ [0.5437, 1), that is, for the particularly interesting large values of γ.
机译:我们考虑对于γ∈[1/2,1)具有γ参数三角不等式的非对称旅行商问题。这意味着,对于所有节点u,v,x,边缘权重都满足w(u,v)≤γ·(w(u,x)+ w(x,v))。钱德兰和拉姆[L.S.尚德兰(L.S.) Ram,带有参数化三角不等式的ATSP近似值,在:Proc。 19th Int。症状在理论上。计算方面。科学(STACS),在:Comput中的讲义中。科学,卷。 2285,Springer,柏林,2002,pp.227-237]给出了该问题的第一个具有多项式运行时间的常数因子近似算法。它们达到了性能比γ/(1-γ)。我们设计了一种性能比为(1 +γ)/(2--γ-γ〜3)的近似算法,它对于γ∈[0.5437,1)更好,也就是对于特别有趣的大γ值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号