首页> 外文期刊>Journal of digital information management >A network traffic classification method using support vector machine with feature weighted-degree
【24h】

A network traffic classification method using support vector machine with feature weighted-degree

机译:基于支持向量机的特征加权度网络流量分类方法

获取原文
获取原文并翻译 | 示例

摘要

Currently, the network traffic classification has two important problems, which are low accuracy and high computation complexity. In order to solve these problems, a novel network traffic classification method using support vector machine with feature weighted-degree (FWD-SVM) is proposed in this study. Our method can efficiently reduce the influence on the sample distribution, relative properties, and redundancy. Through reducing the training time of traffic classification machine and the predicting time of unknown samples, our method speeds up computation performance. Using support vector machine with feature weighted-degree, our method improves the stability and the accuracy of classification. The experimental results demonstrate that the proposed method not only can greatly reduce the computation complexity, but also has higher classified accuracy.
机译:当前,网络流量分类存在两个重要问题,即准确性低和计算复杂度高。为了解决这些问题,本研究提出了一种使用特征加权支持向量机(FWD-SVM)的网络流量分类新方法。我们的方法可以有效地减少对样品分布,相对性质和冗余的影响。通过减少交通分类器的训练时间和未知样本的预测时间,我们的方法提高了计算性能。通过使用具有特征加权度的支持向量机,我们的方法提高了分类的稳定性和准确性。实验结果表明,该方法不仅可以大大降低计算量,而且具有较高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号