首页> 外文期刊>Journal of defense modeling and simulatio >Modeling terrorism culpability: An event-based approach
【24h】

Modeling terrorism culpability: An event-based approach

机译:建模恐怖主义罪责:基于事件的方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, researchers have become interested in the issue of assessing culpability for terrorist attacks when no one group claims or multiple groups claim responsibility. Several new methods have been put forward for predicting culpability, traditionally assessed by intelligence analysts, using both machine learning and statistical classification models. These models have had varying degrees of success, with new ensemble classification models performing generally better than traditional statistical techniques. This paper applies a relatively new methodology, Random Forests, to the problem of predicting culpability and compares it to some of the more frequently used statistical classification techniques, including multinomial logistic regression and naieve Bayesian classification. Though generally outperforming other techniques, Random Forests struggles with unbalanced data, performing worse than either of the other models tested in the class with the least information. However, this evaluation of Random Forests for the assessment of terrorism culpability is positive. Implications of the model and comparison to other models are discussed and ways forward are suggested.
机译:最近,当没有一个团体声称或多个团体声称负有责任时,研究人员对评估恐怖袭击罪责的问题变得很感兴趣。已经提出了几种新的预测犯罪能力的方法,这些方法通常由情报分析师使用机器学习模型和统计分类模型进行评估。这些模型取得了不同程度的成功,新的集成分类模型通常比传统的统计技术表现更好。本文将一种相对较新的方法随机森林应用于可预测性问题,并将其与一些更常用的统计分类技术进行比较,包括多项逻辑回归和朴素贝叶斯分类。尽管总体上胜过其他技术,但随机森林在数据不平衡方面仍处于挣扎状态,其性能要比该类中信息最少的测试模型中的任何一个都要差。但是,这种对随机森林的评估对恐怖主义罪责的评估是积极的。讨论了该模型的含义以及与其他模型的比较,并提出了前进的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号